XEM Collaboration Meeting Jlab Expt: E03-103 & E02-019

Spokepersons: John Arrington, Donal Day, Brad Filippone, Dave Gaskell, Allison Lung

Aji Daniel

University of Houston. Thesis advisor: Ed V. Hungerford

23 JUNE 2005

Outline

- Electron efficiency of Cerenkov
- Pion rejection in Cerenkov
- Pion rejection in shower counter
- Calorimeter resolution
- Summary

Introduction

- In addition to electrons HMS detects negative hadrons also.
- Need clean electrons as efficiently as possible pion contamination should be estimated.
- Two PID detectors Cerenkov and shower counter .

EFFICIENCY STUDIES Lead Glass Calorimeter (shower counter)

- Used to discriminate between electrons and pions.
- Charged particles produce Cerenkov radiation which is detected by photomultiplier tubes.
- Electrons tend to deposit their entire energy, so a peak @ $E_{cal}/E_{prime} \sim 1$
- Pions deposit 300MeV through ionization, so a peak can be observed @ 0.3GeV/E_{prime}.

EFFICIENCY STUDIES Typical spectrum

EFFICIENCY STUDIES Cerenkov

- Cerenkov detector provides particle identification by operating as a threshold detector.
- A pair of front reflecting mirrors focus the light on a pair of PMTs.
- Pion threshold $\sim 4.4 \text{ GeV/c}$
- Electron threshold $\sim 15 MeV/c$
- The detector is filled with C_4F_{10} (n=1.00143@1atm,300K)

EFFICIENCY STUDIES Cerenkov Efficiency

- But a pion can be misidentified as an electron when it produces a knock-on delta electron... and this pion will pass Cerenkov cut.
- Need to know how efficient is the cut that we apply to Cerenkov spectrum .

EFFICIENCY STUDIES Cerenkov Efficiency

- We need a clean sample of electrons.
- Elastic scattering runs can be used for this since there is an additional constraint on W.
- Cuts used in the present analysis:-

• Acceptance cuts:

- abs(hsdelta)<8 (percentage deviation from central momentum)
- abs(hsxptar)<0.07 (out of plane angle)
- abs(hsyptar)<0.03 (in plane angle)

Particle ID cuts:-

- hsshtrk >0.8 &&< 1.2 (Energy measured by calorimeter divided by central momentum)
- abs(w-0.938272)<0.03
- hselhi>100 (shower counter leg of trigger system)

Cer Eff = (Nevents live above cerenkov cut / total Nevents)

EFFICIENCY STUDIES Cerenkov Efficiency:-elastic runs

hcer_npe>2

EFFICIENCY STUDIES Cerenkov Efficiency:-across acceptance

EFFICIENCY STUDIES Cerenkov Efficiency:-across acceptance

Xcer(cm)

Pion rejection using Cerenkov

- We need a pure sample of pions.
- Cuts used:-

Acceptance cuts:

- abs(hsdelta)<8
- abs(hsxptar)<0.07
- abs(hsyptar)<0.03
- hspipre>10
- hsbeta>0.9

• PID cut:-

• hsshtrk >0.05 &&< 0.4

Pion rejection R= (Nevents /Nevents live@cerenkov>2)

Pion rejection using Cerenkov

2000

40 deg

Pion rejection using shower counter

- We need a pure sample of pions.
- Cuts used:-

Acceptance cuts:

- abs(hsdelta)<8
- abs(hsxptar)<0.07
- abs(hsyptar)<0.03
- hspipre>10
- hsbeta>0.9
- PID cut:-
 - hcer_npe<0.5

Pion rejection R= (Nevents /Nevents live@hsshtrk>7)

Pion rejection using shower counter

50 Deg

40 Deg

Pion rejection using shower counter

- From Pion CT expt (by Jason Seely)
- Normal acceptance cuts + tight timing cut on e/pi+ coincidence.

Beam energy(GeV)	Angle (deg)	R
4	10.6	27.6
4	10.6	31.6
4	20.0	29.2
5	13.5	37.5
5	10.6	36.2
5	10.7	34.1
5.8	10.7	33.0

Calorimeter Resolution

Calorimeter Resolution Fit to data

Summary

- Cerenkov efficiency is found to be > 99 %.
- Cerenkov efficiency is acceptance dependent (~2%).
- Pion rejection using Cerenkov is > 500, except at large momenta.
- Pion rejection using shower counter ~30.
- Need to study calorimeter efficiency.