BCM Calibrations for XEM

June 23rd, 2005

Nadia Fomin University of Virginia

BCM Stability

BCM Calibration Example

BCM Calibration 1.0 Linear Fit Residual vs Beam Current 2.01.5BCM1 BCM2 • 1.0 Residual (μA) 0.50.0 -0.5-1.0-1.5-2.0100 125 150 2550750 Current (μA) Linear Fit Residual vs Sample Number 2.01.5 BCM1 BCM2 1.0 Residual (μA) 0.50.0 -0.5-1.0-1.5-2.05 60 75 90 105 120 135 150 Sample Number 15 30 450

Possible Drifting of the UNSER zero

Ideally, instead of calculating an average UNSER zero for the whole calibration run, we should try to use a local zero.

First solution: choose an equal number of beam on and beam off periods, and use an "off" period that's the closest to the "on" period as its zero.

BCM Calibration improvement

While there doesn't appear to be an unser zero drift anymore, or any other non-random scatter, the final calibration numbers hardly changed from the first attempt.

Gain factors for three cavity monitors	Gain factors for three cavity monitors	
(original)	(redone with #beam_offs=#beam_ons)	
gbcm1_gain = 0.00032889 ; microA/Hz	gbcm1_gain = 0.00032893 ; microA/Hz	
gbcm2_gain = 0.00038301 ; microA/Hz	gbcm2_gain = 0.00038307 ; microA/Hz	
zero offsets for BCM s	zero offsets for BCM s	
gbcm1_offset = 250507. ; Hz	gbcm1_offset = 250510. ; Hz	
gbcm2_offset = 250517. ; Hz	gbcm2_offset = 250522. ; Hz	

EXAMPLE: 454000 Hz for BCM2=~ 80uA

BCM2 _{orig} =(454,000-50,517)*.0038301=7	7.936uA	BCM2 _{red}	one=(454,000-250,522)*.0038307=77.946uA
	δBcm2=	=0.01%	

BCM residuals comparison

Orignial calibration

Local zero calibration

No clustering or unusual distribution here, everything's okay.

Summary

While some of the calibrations runs tend to be long (~2 hours) and the UNSER zero does drift during that time, the BCM calibration procedure does not yield very different results with the use of local UNSER zeroes.