Luminosity scan

Why?

- Localized boiling can cause uncertainties in cryogenic target density
- Cryogenic targets
 - H₂(0.07283 g/cm³ @ 19.0 K)
 - D₂(0.16743 g/cm³ @ 22.0 K)
 - ³He and ⁴He
 (0.00393 g/cm³ @ 6.1 K)

Luminosity scan

Possible dependences

- Beam current
 - A range from $10 90 \mu A$ was used
 - The higher the current, the higher the risk of boiling
- Raster size
 - 2 x 2 mm
 - Depending on the spot size of the beam and due to the sinusoidal raster motion in x and y, boiling effects are higher in the edges
 - The smaller the raster, the higher the

How to test

 Plotting the normalized yield (events per charge) versus the beam current

(from thesis of J. Arrington, 1998)

- The fall off of the yield at higher beam current indicates localized boiling of the target
- No dependence on raster size within ~0.013%/mm/μA

Where to get the yield

•Yield = events per charge (normalized to one)

 $YIELD = \frac{\#events \cdot psl}{(1 - dt_c) \cdot (1 - dt_e) \cdot e(trig) \cdot e(3/4) \cdot e(track) \cdot e(cer)} \cdot \frac{1}{Q}$

#events number of good events
(determined by applying cuts)
hcer_npe>2 ev_type==1
abs(hsdelta)<12 abs(hsshtrk-1)<0.15
abs(hsxptar)<0.07 abs(hsyptar)<0.03</pre>

ps1 dt(c), dt(e) time e(trig) e(track) e(3/4) e(cer) Q_{charge} Prescale factor Computer and electronic dead Trigger efficiency Tracking efficieny ¾ efficiency Cerenkov efficiency Charge

Carbon test data

 Carbon as solid target is supposed to have a stable yield even at high beam currents

Carbon test data

Checking effects of cuts

The two plots represent two different luminosity scan sets

Carbon test data

Checking effects of cuts

The two plots represent two different luminosity scan sets

Hydrogen

averaged each set separate

- The point at appr. 45 µA is ~3% off
- The black set drops off slightly

Deuterium

averaged each set separate

- Similar behavior like hydrogen
- 514.. runs have 2% less yield than 519.. runs

Helium

- ³He and ⁴He current dependencies similar to carbon test data
- + 502.. runs with slope of $\sim 4\%$ / $100~\mu A$

Conclusion

- The yield is in a range of $\sim 0.8\%$ when normalized to each set separate, else $\sim 1.5\%$
- \bullet Overall slope of about 2% / 100 μA
- Not yet understood is the behavior of the yield for the carbon test data
 - Same effect for H, D and He
 - No boiling effect seen
 (but cannot be excluded)

Next steps

- Check efficiency dependence
- Use pions instead of electrons
- Where available compare HMS to SOS data
- Check current calibration (deviation from linear behavior)