Kinematic and Beam+Target Offsets

Dave Gaskell
 XEM Collaboration Meeting June 23, 2005

- Kinematic offsets
- Beam and target offsets

HMS Offsets from Elastic Singles

- Using a large body of elastic singles data, one can fit the angle and momentum offsets of the HMS
- Assumes the beam energy is known
- Can also allow the beam energy to float, but probably not needed these days (energy measurement good to a few $\times 10^{-4}$)
- Compare reconstructed W for elastic scattering to proton mass
- Things to look out for:
- Optics effects - correlations in reconstructed of focal plane variables
- Radiative effects
- Energy loss
- Vertical beam position -> mimic momentum offset

HMS offsets from Fpi-2

- Tanja Horn's analysis of HMS elastic singles from Fpi2
$-d P_{\text {Hms }}=-0.13 \%$
- d $\theta_{\text {нмs }}=0 \mathrm{mrad}$
- Somewhat different from earlier analysis by Eric Christy
$-\mathrm{dP}_{\text {нмя }}=-0.09 \%$
- $\mathrm{d} \theta_{\text {HMS }}=-0.6 \mathrm{mrad}$
- Eric's offsets gave strange results at very small HMS angles, but Eric's data sampled a much larger angular range at large energy

HMS offsets from XEM Data

- Fpi2 offsets work well for 2 GeV data, but not 5.77 GeV data
- Eric's offsets from '99 elastic analysis seem to work out better

-If I do a combined fit Of the 2 GeV and 5.77 GeV Data, I get ~-0.4 mrad
-Note the problem with the 5 GeV data. Logbook indicates dipole troubles - no angle written down.

Beam and Target Positions

- Spectrometer ytar reconstruction can be used to figure out horizontal beam position and target z offset
- Ideally, would use simultaneous HMS/SOS data and project back to target and find intersection
- Most of our runs with data in the HMS and SOS at the same time have rather low SOS statistics
- Alternatively, if HMS spans large angular range, can use a family of projections to find position

Spectrometer Mispointing

- Need to correct extracted ytar for spectrometer mispointing
- The HMS points a little bit downstream (as you face the target) This results in a positive offset in hsytar

Beam and Target Position - the Fun Way

- Fit ytar position for $\mathrm{z}=0$ "point" target
- Apply pointing offset
- Draw line parallel to spectrometer angle, offset by ytar
- Find where points intersect
- Note: did not correct for horizontal beam position $(\operatorname{max~dx}=0.33 \mathrm{~mm})$

Beam and Target Position - the Less Fun Way

- Use:
$y \operatorname{tar}=-x \cos (\theta)+z \sin (\theta)$ $y \operatorname{tar} / \cos (\theta)=-x+z \tan (\theta)$
- Fitted offsets:
$\mathrm{dx}=-1.1 \mathrm{~mm}$
$->$ this is relative to -0.18 mm using BPMs $\mathrm{dz}=2.5 \mathrm{~mm}$
- Data from H/D running consistent with data from He3/He4 running

Beam+Target Positions Compared to MC

- Ideally, after all that work, I should be able to put best fit beam and target positions in Monte Carlo and have perfect agreement
- Unfortunately - doesn't quite work
- BUT - cryotarget may not be centered at same z as solid target. Survey only gives position of upstream face of solid target holder - need more info from Meekins

Elastic data at 18 degrees

Vertical Beam Position

- Vertical beam position offset can, at first order, result in a momentum offset $(0.077 \% / \mathrm{mm})$
- To determine the correct vertical beam position, we use the HMS sieve slit
- Assuming the sieve slit central hole is centered on the HMS optical axis, xptar offset for trajectory through central hole is proportional to vertical offset

$$
\mathrm{xtar}=\mathrm{xptar} /(-1.73 \mathrm{mrad} / \mathrm{mm})
$$

- From run 50130 hsxptar $=-0.2$ mrad $->$ beam position $=-$ 0.12 mm (low in the lab)
- For this run, the BPMs read -0.43 mm , so BPM positions should by corrected by +0.31 mm to give correct vertical beam position

Summary

- Best values for HMS offsets:
$-\mathrm{dP}=+0.03 \%$ (relative to -0.13% in ENGINE)
- -0.4 mrad
- Beam and target offsets:
$-\mathrm{dx}=-1.1 \mathrm{~mm}$ (relative to -0.18 mm on BPM)
$-\mathrm{dz}=2.5 \mathrm{~mm}$
$-d y=0$ when $B P M=-0.31 \mathrm{~mm}$

