Precise Measurement of Nuclear Dependence of Structure Functions in Light Nuclei

(JLab expt E03-103 ; Spokepersons: John Arrington and Dave Gaskell)

For the E03-103 collaboration Aji Daniel University of Houston. Thesis advisor: Ed V. Hungerford

Hall C user's meeting 01.05.05

Outline

- Introduction
- JLAB experiment E03-103
- Work in progress
- Summary

- Energy scale of DIS interactions (GeV).
 Energy scale of nuclear processes (MeV) ⇒ result doesn't depend on nuclear target. (not true!!!)
- Measurements of F_2^A/F_2^D (EMC, SLAC, BCDMS) have demonstrated modification of quark distributions in nuclei.

Figure 1: $(\sigma_{Fe}/\sigma_{^2H})$ ratios as a function of x from EMC (hollow circles), SLAC (solid circles), and BCDMS (squares). The data have been averaged over Q^2 and corrected for neutron excess.

- The nuclear EMC effect shows that quark distribution is different in nuclear systems
- Magnitude depends on A but shape more or less same.
- Several models, but valid only in certain kinematical regions.

Figure 1: $(\sigma_{Fe}/\sigma_{^2H})$ ratios as a function of x from EMC (hollow circles), SLAC (solid circles), and BCDMS (squares). The data have been averaged over Q^2 and corrected for neutron excess.

• EMC effect has been measured for many targets and over a large kinematic range

SLAC E139

- Ratios can be parameterized as log(A) or linear density dependence
- ⁴He/D is more sensitive , but uncertainty is large for existing data and consistent with both parameterizations
- Addition of ³He data will impose new constraints on the parameterization

- For heavy nuclei magnitude of EMC effect varies with A but shape more or less same.
- Observed x dependence in ⁴He consistent, but uncertainties are large.
- Recent predictions size and magnitude may be different for light nuclei

(point of maximum suppression and cross over of ratio at large \boldsymbol{x})

Experiment E03-103 @ JLAB

- Inclusive electron scattering from cryo targets ¹H, ²H, ³He, ⁴He and solid targets Al, C, Be, Cu, Au over a broad range of kinematics.
- Precise measurement on ⁴He, over SLAC E139.
- First measurement of EMC effect on ³He for x > 0.4
- Test models of the EMC effect in "exact" few-body calculations.
- Guidance for calculations of nuclear effects in deuterium.
- Information on the neutron structure function.

Experiment E03-103 @ JLAB

Source	Absolute	Relative	$\delta\sigma/\sigma(\%)$	$\delta R/R(\%)$	$\delta R/R(\%)$	$\delta R/R~(\%)$
	Uncertainty	Uncertainty		point-to-point	scale	Statistical
HMS Momentum	$<\!0.1\%$	0.01%	0.2	-	-	
Beam Energy	${<}0.1\%$	${<}0.02\%$	0.2	0.1	-	
θ	$0.5\mathrm{mr}$	$0.2\mathrm{mr}$	0.1	0.1	0.1	
t_D	0.5%		0.5	-	0.5	
t_{He}	1.0%		1.0	-	1.0	
Charge	0.4%	0.3%	0.5	0.42	0.2	
Target Boiling	${<}1.0\%$	0.5%	< 1.0	0.3	0.3	
Endcap Subtraction	${<}1.0\%$	0.2%	< 1.0	0.1	0.1	
Acceptance	1.0 -2.0%	0.2%	1.0-2.0	0.2	-	
Radiative Corrections	2.0%	0.5%	2.0	0.3	0.4	
Detector Efficiency	0.5%	0.2%	0.5	0.2	-	
Deadtime Correction	${<}0.5\%$	0.2%	$<\!0.5$	0.1	0.2	
Total			2.7 - 3.3	0.7%	1.3	0.5 - 0.7
E139			3.3 - 3.7	1.6%	2.2	1.0-2.2

Table 4: Systematic uncertainties in the ratio $\sigma_{He}/\sigma_{^2H}$, compared to E139 uncertainties (for ⁴He).

Experiment E03-103 @ JLAB

- Ran last summer and fall along with E02-019 at HALL C of Jlab with 5.77 GeV beam energy.
- Increased beam current (due to improvement in target cooling system) allowed for extensive background and elastic studies.
- Data on

Cryo targets ³He, ⁴He, LD₂,LH₂ Solid targets Al, C, Be, Cu ,Au at 18, 22, 26, 32, 40 and 50 degrees

EMC effect at large x

- For x>0.6, E03-103 data at W<4 GeV (resonance region)
- Recent data from JLab suggest that even in the resonance region inclusive cross sections scale.
- Hall C data (E89-008) taken at 4 GeV, sees no apparent deviation (at the 10% level) from scaling for W²>2 GeV² (for Q² > 3 GeV²)

Analysis **Cerenkov efficiency correction**

final 2.97.out

Analysis Luminosity scan

Jason

Analysis Luminosity scan

Analysis Acceptance correction:- multiple scattering

Nadia

Analysis External radiative corrections

External radiative corrections are different for the dummy target than for the cryotarget walls

 $R^{ext} = \frac{R_d}{R_{cryo}}$

Dave

Comparison:

Carbon 1.14 40 deg

Analysis Preliminary ratios:- Carbon

includes1.5% point-to-point systematic uncertainty 3% normalization uncertainty (target thickness, radiative and bin centering corrections) Jason

Analysis Preliminary ratios:-He4

Jason

To do

- Acceptance corrections at low momentum need to be worked out
- Need to iterate input model for bin centering and radiative corrections
- Need to study variation of beam position, beam angle
- Need to include Coulomb corrections

Summary

- Study of the EMC effect in light nuclei will help us to distinguish between models and impose new constraints
- E03-103 will increase the precision of ⁴He ratios, and will be the first precise measurement for ³He at x>0.4
- E03-103 data at W<4 GeV and x>0.6 (resonance region) allows to study EMC effect at large x
- Analysis well underway and data processing almost complete

E03-103 Collaboration

J. Arrington (spokesperson), L. El Fassi, K. Hafidi, R. Holt, D.H. Potterveld, P.E. Reimer, E. Schulte, X. Zheng Argonne National Laboratory, Argonne, IL

B. Boillat, J. Jourdan, M. Kotulla, T. Mertens, D. Rohe, G. Testa,

R. Trojer Basel University, Basel, Switzerland

B. Filippone California Institute of Technology, Pasadena, CA

C. Perdrisat College of William and Mary, Williamsburg, VA

> **D. Dutta, H. Gao, X. Qian** *Duke University, Durham, NC*

W. Boeglin Florida International University, Miami, FL

M.E. Christy, C.E. Keppel, S. Malace, E. Segbefia, L. Tang, V. Tvaskis, L. Yuan Hampton University, Hampton, VA

> **G. Niculescu, I. Niculescu** James Madison University, Harrisonburg, VA

P. Bosted, A. Bruell, V. Dharmawardane, R. Ent, H. Fenker, D. Gaskell (spokesperson), M.K. Jones, A.F. Lung, D.G. Meekins, J. Roche, G. Smith, W.F. Vulcan, S.A. Wood

Jefferson Laboratory, Newport News, VA

B. Clasie, J. Seely *Massachusetts Institute of Technology, Cambridge, MA*

> **J. Dunne** Mississippi State University, Jackson, MS

V. Punjabi Norfolk State University, Norfolk, VA

> **A.K. Opper** Ohio University, Athens, OH

H. Nomura Tohoku University, Sendai, Japan

M. Bukhari, A. Daniel, N. Kalantarians, Y. Okayasu, V. Rodriguez University of Houston, Houston, TX

> **F. Benmokhtar, T. Horn** University of Maryland, College Park, MD

D. Day, N. Fomin, C. Hill, R. Lindgren, P. McKee, O. Rondon, K. Slifer, S. Tajima, F. Wesselmann, J. Wright University of Virginia, Charlottesville, VA

R. Asaturyan, H. Mkrtchyan, T. Navasardyan, V. Tadevosyan Yerevan Physics Institute, Armenia

S. Connell, M. Dalton, C. Gray University of the Witwatersrand, Johannesburg, South Africa