SANE

Spin Asymmetries on the Nucleon Experiment (TJNAF E-03-109)

SANE Collaboration

U. Basel, Florida International U., Hampton U., Norfolk S. U., IHEP-Protvino, Rensselaer Polytechnic I., Temple U., TJNAF, U. of Virginia, College of William & Mary, Yerevan Physics I.

Spokespersons: S. Choi (Seoul), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Hall C Users Meeting January 8, 2005 Jefferson Lab

SANE Physics

- Measure proton spin structure function $g_2(x, Q^2)$ and spin asymmetry $A_1(x, Q^2)$ at four-momentum transfer $2.5 \le Q^2 \le 6.5$ GeV² and Bjorken $x \ 0.3 \le x \le 0.8$
- Goals:
 - Study x and Q^2 dependence of SSF's in poorly measured region
 - Twist-3 effects from moments of g_2 and g_1
 - Comparison with Lattice QCD predictions of twist-3 matrix elements
 - Exploration of "high x" region: A_1 approach to x = 1
 - Test polarized local duality for final state mass W > 1.4 GeV
- Method:
 - Measure inclusive spin asymmetries for two orientations of target spin relative to beam helicity
 - Detect electrons with large solid angle electron telescope **BETA**

SANE Expected Results

• DIS data for *x* up to 0.6 (with 6 GeV)

• Resonance data measured down to W = 1.38 GeV: test of spin duality

SANE Expected Results (II)

- x dependence at constant Q^2 and Q^2 dependence at fixed x
- data are concentrated in the region most sensitive to $x^2g_{2,1}$

SANE Expected Results (III)

- Twist-3 matrix element $d_2 = \int_0^1 x^2 (2g_1 + 3g_2) dx$ calculable in Lattice QCD
- expected error on $d_2(Q^2 = 2.5 \text{ to } 6.5 \text{ GeV}^2) = 0.0009$ (½ the current world error)

SANE Expected Results (IV)

- Using polarized local duality to explore A_1^{p} above $x \sim 0.6$
- Constrain extrapolations of A_1^p to x = 1 within +/- 0.1: distinguish between models

SANE Kinematics and Layout

Target 40` UVa NH3 target 5 T field $\theta_N = 80^{\circ}$ **Beamline** Chicanes SEM He Bag $\theta_{\rm N} = 180^{\circ}$ **Electron Arm BETA** • HMS **Background Studies** HMS • $\theta_{\rm HMS} = 35-45$

- Two beam energies:
 - 6 GeV, 4.8 GeV
- Very good high *x* coverage

- Hall C facilities
- Target field aligned to measure Parallel and near-Perpendicular asymmetries

Big Electron Telescope Array - BETA

- Three subsystems:
 - BigCal lead glass calorimeter: main detector, being built for *GEp-III*.
 - Gas Cherenkov (N): additional pion rejection
 - Tracking hodoscope (Cherenkov)
- Target field sweeps low *E* <u>background</u>
- Characteristics of *BETA*
 - Effective solid angle (with cuts) = 0.194 sr
 - Energy resolution $5\%/\sqrt{E(\text{GeV})}$
 - angular resolution = 2°
 - 1000:1 pion rejection

SANE Reference Design

SANE Current Design (1/05)

SANE Status - Organization

- Conditional approval by PAC24 for 27 days in Hall C with A- rating
 - experimental verification of energy resolution, pion rejection, tracking
 - tools to check expected rates and backgrounds during commissioning
- Five previous collaboration meetings (11/2003, 3/, 6/, 9/ and 11/2004)
 - Next meeting Friday Jan. 14, 2005.
- Three new collaborator groups since PAC: Florida International U., Norfolk State U., and second U. of Virginia group
- IHEP-Protvino collaborator to work on BigCal 6 mos. starting 3/05
- Hall C schedule (R. Ent):
 - SANE tentatively to run in 1st. half 2007, followed by Semi-SANE
- Time lines show adequate lead time for installation in Fall 2006.
- SANE Web site: http://www.jlab.org/~rondon/sane/

SANE Status - Subsystems(I)

- BigCal Calorimeter for *GEp-III*
- 1744 lead crystals, all PMT's and bases installed
- 3 platforms: Glass and multiplexers, cables and floor electronics
- Cosmic rays tests partly completed
- Coincidence tests with HMS done
- Work in progress
 - Software readout
 - Calibration
 - Gain monitor
- BigCal collaboration L. Pentchev, project leader

SANE Status - Subsystems (II)

- Temple U.'s new modular design of gas Cherenkov:
 - 3" PMT's only on side far from beam
 - Mirror section decouples from upstream drift section
- Tests of prototype gas Cherenkov in Hall C
 - Fall 2004 thru Jan. 2005
- Mechanical design nearly complete
- Readout may use flash ADC's (S. Wood report, 6/04)

SANE Status - Subsystems (III)

- Alternative design for tracking hodoscope
 - Located next to target chamber
 - Quartz as Cherenkov material is feasible because of reduced size
 - Much improved tracking resolution vs. reference design
 - SiPM light detectors operate in 1 T fields, but response is above 400nm
 - proposed by Peter Bosted
 - Mahbub Khandaker (NSU) leads project, proposal to Hampton U. F. of P. Center
- Lucite hodoscope not discarded
 - needs redesign, group in charge
 - great opportunity

SANE Status - Subsystems (IV)

- Gain Monitor: Lucite Plate excited by laser light
 - UVA (D. Pocanic's group) built similar for Hall B's RadPhi
 - bench tests of glass response to Lucite light at UVA
 - integration with BigCal in 2005
- Polarized target outer vacuum can (OVC) design under way (UVA polarized target group)
 - windows number, locations and sizes
 - can dimensions
- Integrate OVC with requirements of
 - quartz forward hodoscope
 - *e-p* elastic calibrations and asymmetries measured with HMS
 - Semi-SANE kinematics

SANE Status -Open Issues (= Opportunities)

- Backgrounds and their reduction:
 - from beam line: detailed simulation and shielding design
 - from target: pion and positron rejection/identification
 - improved tracking
 - Pion scintillator wall behind BigCal group in charge welcome
 - V. Dharmawardane (Hall C) report 1/14/05 on pair symmetric background
- BigCal absolute energy calibration
 - *e-p* elastic scattering with *p* in HMS: kinematics and running time optimization
 - π° mass reconstruction: simulation and on-line code
- Target material: ¹⁴NH₃ or ⁷LiH?
- Optimization of pair-symmetric asymmetry measurement with HMS