SANE Spin Asymmetries on the Nucleon Experiment

TJNAF E-03-109

U. Basel, Hampton U., Louisiana Technical U., IHEP Protvino, Rensselaer Polytechnic I., Temple U., TJNAF, U. of Virginia, College of William \& Mary, Yerevan Physics I.

Spokespersons: Seonho Choi (Temple), Zein-Eddine Meziani (Temple), Oscar A. Rondon (U. of Virginia)
(G. Warren (PNNL) - proposal spokesperson)

Physics:

- Measure proton spin structure function $\boldsymbol{g}_{2}\left(x, Q^{2}\right)$ and spin asymmetry $A\left(x, Q^{2}\right)$ at momentum transfer $2.5 \leq Q^{2} \leq 6.5 \mathrm{GeV}^{2}$ and Bjorken $x 0.3 \leq x \leq 0.8$
- Study x and Q^{2} dependence, twist-3 effects, moments of g_{2} and g_{1}, comparison with Lattice QCD predictions, test polarized local duality for $W>1.4 \mathrm{GeV}$,
- Single-arm experiment with large solid angle electron telescope BETA

Lepton-Nucleon Polarized Scattering

- General form of polarized scattering

$$
\frac{d^{2} \sigma^{(\uparrow \downarrow)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\downarrow\llcorner)}}{d \Omega d E^{\prime}}=\Delta \sigma\left(\vartheta, \vartheta_{N}, \phi\right)=
$$

$\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E}\left[\left(E \cos \vartheta_{N}+E^{\prime} \cos \vartheta\right) M G_{1}+2 E E^{\prime}\left(\cos \alpha-\cos \vartheta_{N}\right) G_{2}\right]$
$\cos \alpha=\sin \vartheta_{N} \sin \vartheta \cos \phi+\cos \vartheta_{N} \cos \vartheta$

- Nuclear spins parallel or perpendicular to the beam helicity

$$
\Delta \sigma\left(\vartheta_{N}=0\right)=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E}\left[\left(E+E^{\prime} \cos \vartheta\right) M G_{1}-Q^{2} G_{2}\right]=2 \sigma_{U} A_{\|}
$$

$$
\Delta \sigma\left(\vartheta_{N}=\pi / 2, \phi\right)=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E} E^{\prime} \sin \vartheta \cos \phi\left[M G_{1}+2 E G_{2}\right]=2 \sigma_{U} A_{\perp}
$$

Spin Structure Functions (SSE's)

- SF's at Low Energy (e.g. Resonances): forward virtual Compton scattering

$$
A_{1}\left(Q^{2}, v\right)=\frac{\sigma_{1 / 2}^{T}-\sigma_{3 / 2}^{T}}{\sigma_{1 / 2}^{T}+\sigma_{3 / 2}^{T}}=\frac{M v G_{1}\left(Q^{2}, v\right)-Q^{2} G_{2}\left(Q^{2}, v\right)}{W_{1}\left(Q^{2}, v\right)}
$$

- Transition from low energy (resonances) to high energy (DIS)

$$
\begin{aligned}
& \lim _{Q^{2}, v \rightarrow \infty}\left(M^{2} v\right) G_{1}\left(Q^{2}, v\right)=g_{1}(x) \\
& \lim _{Q^{2}, v \rightarrow \infty}\left(M v^{2}\right) G_{2}\left(Q^{2}, v\right)=g_{2}(x) \\
& \lim _{Q^{2} v \rightarrow \infty} M W_{1}\left(Q^{2}, v\right)=F_{1}(x), \quad x=\frac{Q^{2}}{2 M v}
\end{aligned}
$$

- SF's in DIS: Parton model (and Operator Product Expansion - OPE)

$$
A_{1}(x) \approx \frac{g_{1}(x)}{F_{1}(x)}=\frac{\sum e_{i}^{2} \Delta q_{i}}{\sum e_{i}^{2} q_{i}}
$$

Transverse Spin Structure Functions

- Polarized transverse structure function has no simple parton model interpretation
- \boldsymbol{g}_{2} is combination of twist-2 and twist-3 components:

$$
\begin{gathered}
g_{2}\left(x, Q^{2}\right)=g_{2}^{n W}\left(x, Q^{2}\right)+\overline{g_{2}}\left(x, Q^{2}\right) \\
=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} g_{1}\left(x^{\prime}, Q^{2}\right) \frac{d x^{\prime}}{x^{\prime}}-\int_{x}^{1} \frac{\partial}{\partial x^{\prime}}\left[\frac{m}{M} h_{T}\left(x^{\prime}, Q^{2}\right)+\xi\left(x^{\prime}, Q^{2}\right)\right] \frac{d x^{\prime}}{x^{\prime}}
\end{gathered}
$$

- Wandzura-Wilczek part depends on $\boldsymbol{g}_{1} ; \quad \boldsymbol{h}_{\mathrm{T}}$ is twist-2 chiral odd transversity
- ξ represents twist-3 quark-gluon correlations.
- Transverse spin structure function g_{T} measures spin distribution normal to virtual γ

$$
g_{T}=g_{1}+g_{2}=\int_{x}^{1}\left[g_{1}-\frac{\partial}{\partial x^{\prime}}\left(\frac{m}{M} h_{T}+\xi\right)\right] \frac{d x^{\prime}}{x^{\prime}}=\frac{v}{\sqrt{Q^{2}}} F_{1}\left(x, Q^{2}\right) A_{2}\left(x, Q^{2}\right)
$$

Transverse Spin Structure Sum Rules

- OPE relates moments of $\boldsymbol{g}_{\boldsymbol{1}}, \boldsymbol{g}_{2}$ to twist-2 $\left(\boldsymbol{a}_{\mathrm{N}}\right)$, twist- $3\left(\boldsymbol{d}_{\mathrm{N}}\right)$ matrix elements.

$$
\begin{array}{ll}
\int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{1}{2} a_{N}+O\left(M^{2} / Q^{2}\right), & N=0,2,4, \ldots \\
\int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N}{2(N+1)}\left(d_{N}-a_{N}\right)+O\left(M^{2} / Q^{2}\right), & N=2,4, \ldots
\end{array}
$$

- $\boldsymbol{d}_{\mathrm{N}}$ measure twist-3 contributions (for $m \ll M$ and $\boldsymbol{h}_{\mathrm{T}}$ not too large.)

$$
\boldsymbol{d}_{N}\left(Q^{2}\right)=\frac{2(N+1)}{N} \int_{0}^{1} x^{N} \overline{\boldsymbol{g}_{\mathbf{2}}}\left(x, Q^{2}\right) d x
$$

- Burkhardt-Cottingham
- not from OPE
- Efremov-Leader-Teryaev
- valence quarks

$$
\int_{0}^{1} g_{2}(x) d x=0
$$

$$
\int_{0}^{1} x\left(g_{1}^{V}(x)+2 g_{2}^{V}(x)\right) d x=0
$$

Beyond Inclusive Longitudinal Scattering

- Eight distribution functions:
- quark k_{\perp} independent (leading twist)
- F_{1}, g_{1}, inclusive
- $\delta=$ transversity
- quark k_{\perp} dependent
- $g_{1 \mathrm{~T}}=g_{1}+g_{2}$, inclusive, mixed twist.
- $h_{1 \mathrm{LI}}{ }^{\perp}, h_{1 \mathrm{~T}}{ }^{\perp}$, semi - inclusive, T - even
- $f_{1 T}{ }^{\perp}, h_{1}^{\perp}$, semi - inclusive, T - odd
- Spin Dependent Fragmentation: Semiinclusive Leptoproduction
- Hadron ($\pi, \mathrm{K}, .$.)-lepton coincidence
- Semi-inclusive Asymmetries

$$
A_{1}^{h}\left(x, z, Q^{2}\right)=\frac{\sum_{f} e_{f}^{2} \Delta q_{f}\left(x, Q^{2}\right) D_{f}^{h}\left(z, Q^{2}\right)}{\sum_{f} e_{f}^{2} q_{f}\left(x, Q^{2}\right) D_{f}^{h}\left(z, Q^{2}\right)}\left(z=E_{h} / v .\right.
$$

- Spin Dependent Exclusive Scattering:
- Generalized Parton Distributions

Data on A and A : protons and deuterons

- Central kinematics for A and A measurements on protons and deuterons
- $Q^{2} \leq 10 \mathrm{GeV}^{2}$
- Data from
- SLAC
- HERMES
- JLab Hall B (upper limit of Q^{2})
- JLab Hall C
- (SMC data $x<0.05$ not shown)

SANE Kinematics and Layout

- Two beam energies:
- 6 GeV (black)
- 43 C Gey (green)

Target

- UVa NH3 target
- 5 T field

Beamline

- Chicanes
- SEM
- He Bag

Electron Arm

- BETA

Background Studies

- HMS
- Hall C

$$
\theta_{\mathrm{N}}=180^{\circ}
$$

- CEBAF polarized beam
- 85 nA
- 75% beam polarization

Big Electron Telescope Array - BETA

- Three subsystems:
- Lead glass calorimeter BigCal: main detector
- Gas Cherenkov (N): additional pion rejection
- Lucite hodoscope: tracking
- Target field sweeps low E background
- Characteristics
- Effective solid angle (with cuts) = 0.194 sr
- Energy resolution $5 \% / \sqrt{ } E(\mathrm{GeV})$
- angular resolution $=2^{\circ}$
- 1000:1 pion rejection

SANE in Hall C

BigCal

Lucite

Gas Cherenkov

- Lucite Cherenkov:
- $16 x$ by $8 y$ hodoscope
- 1.25 cm thick x, 2.5 cm thick y
- PMT at each end

UVa Polarized Target

- Dynamic Nuclear Polarization
- 5 T Field
- can steer beam
- affect optics of scattered electrons
- 1 K evaporative refrigerator
- Composite target: $\mathrm{N}+\mathrm{H}+\mathrm{He}$
- asymmetry is diluted by unpolarized materials
- Measure target polarization
- calibration: thermal equilibrium
- continuous monitoring by NMR

Acceptance: $\mathrm{E}=6.0 \mathrm{GeV}, \theta_{N}=180^{\circ}$

- All four kinematics are similar.

Beam Line Background Studies

Beam Line Background Studies

Conducted preliminary beam line background studies using simulation package of Pavel Degtiarenko.

- Parallel field: no problems with BETA at 40°.
- Transverse field: a large fraction of electrons escape pathologically into BETA:
- expect at most $200 \mathrm{kHz} / \mathrm{PMT}$ for Gas Cerenkov.
- Pileup, trigger rates, detector rates all remain manageable.
- These numbers are conservative... will probably have a reduction of at

Rates in BETA

Gas Cerenkov (>			
E	MeV)		
E	e^{-}	π^{-}	Trig
4.8	28.1	242.0	30.5
4.8	1590.0	223.0	1592.2
6.0	25.3	255.0	27.9
6.0	1510.0	236.0	1512.4

Gas Cerenkov (> 20 MeV)

Background Rates

- Dominated by charge-symmetric processes, mostly $\pi^{0} \rightarrow \gamma \mathrm{e}^{+} \mathrm{e}^{-}$.
- Measure ratio of rates in HMS.

Measure ratio of asymmetries using events with $\gamma, \gamma \gamma$ and $\mathrm{e}^{+} \mathrm{e}^{-}$in BETA and use CLAS data.

Hadron backgrounds measured by ignoring Gas Cerenkov in trigger.
Reduce Positron Rates by increasing energy threshold

SANE Expected Results

- x dependence at constant Q^{2} and Q^{2} dependence at fixed x
- Multiple data points at different Q^{2} values for each value of x

SANE Expected Results (II)

- DIS data up to $x=0.6$; Resonances measured down to $W=1.38 \mathrm{GeV}$ - g_{2} measured in region of most sensitivity for \boldsymbol{d}_{2}

SANE Expected Results (III)

- Twist-3 matrix element $\boldsymbol{d}_{2}=\int_{0}^{1} x^{2}\left(2 g_{1}+3 g_{2}\right) d x$ calculable in lattice QCD
- expected error on $\boldsymbol{d}_{2}\left(Q^{2}=2.5\right.$ to $\left.6.5 \mathrm{GeV}^{2}\right)=0.0009(1 / 2$ the current world error $)$
- Test of polarized local duality with ΔW resolution $\leq 130 \mathrm{MeV}$, constant Q^{2}

Estimated Systematics for 6 GeV

1.5\%
2.0\%
2.5\%
1.0\%
0.4\%

R
Kinematics
Background
Local
Global
Total

$\mathrm{A1p}$	
$x=0.3$	$x=0.6$
0.8%	1.2%
0.4%	0.5%
1.0%	1.0%
2.1%	2.3%
3.3%	3.3%
4.2%	4.0%

$g 2$	
$x=0.3$	$x=0.6$
1.5%	1.3%
2.7%	4.5%
3.7%	1.8%
4.0%	4.1%
4.6%	4.7%
6.8%	6.7%

Beam Time Request

Energy	θ_{N}	Time (h)
6.0	180	100
6.0	80	200
4.8	180	70
4.8	80	130
2.4	-	10
Packing Fraction	20	
Mollers	21	
Total beam time	551	
Anneals		
Energy Change	62	
Target Rotation	48	
Stick Changes	48	

Requested Time 654 (27 d)

PAC 24 Report

Individual Proposal Report
Proposal: PR 03-109
Scientific Rating: A-
Title: Spin Asymmetries on the Nucleon Experiment (SANE)

Monte Carlo simulations have also been performed to simulate the impact of the beam line background. Given the present expectations for the detector performance and for the background rate, the measurement should be feasible.

Issues: Due to the novel technique and to the uncertainties of the background in the measurement configuration, the PAC recommends that prior to the detector installation, experimental tests should be performed in order to verify the expected performances in terms of energy resolution and calibration, pion rejection and track reconstruction. In addition, the Collaboration should develop all the needed software and hardware tools to determine in the very early stage of the commissioning of the detector/polarized target set-up whether the background conditions and rates are in agreement with expectations.

Recommendation: Conditionally Approve for 27 days in Hall C

Collaboration (11/03)

J.-P. Chen, R. Ent, D. Gaskell, J. Gomez, D. Higinbotham, M. Jones, D. Mack, J. Roche, G. Smith, B. Wojtsekhowski, S. Wood Jefferson Lab
D. Crabb, D. Day, E. Frlez, N. Liyanage, P. McKee, D.Pocanic, O. Rondon, F. Wesselmann, H. Zhu,

University of Virginia
E. Christy, C. Keppel

Hamption University
T. Averett

College of William and Mary
A. Vasiliev

Institute for High Energy Physics, Protvino
V. Kubarovsky

Rensselaer Polytechnic Institute
S. Choi, Z.-E. Meziani

Temple University
J. Jourdan, M. Kotulla, D. Rohe

University of Basel, Switzerland
A. Agalaryan, R. Asaturyan, H. Mkrtchyan, S. Stepanyan, V. Tadevosyan Yerevan Physics Institute, Armenia

Spin Structure Physics \rightarrow JLab, Temple, UVa,W\&M

Detectors

\rightarrow Yerevan, JLab (LA Tech)
Calorimeter
\rightarrow Protvino, UVA, Temple

Target

JLab, UVA

Physics from SANE

