Lucite Hodoscope for SANE

A. Ahmidouch, S. Danagoulian NC A\&T State University

Outline

- Cosmic Ray test of a lucite prototype bar
- The old result from Monte Carlo
- Geometry consideration
- Trigger
- Electronics and DAQ
- Test Results
- TDC distributions
- Z-distributions
- Position reconstructed vs measured, resolution
- ADC Spectra
- Single Electron Peak measurements
- Conclusions from test
- Influence of the Hodoscope on Energy and Coordinate Resolution. Results of simple estimations
- Multiple Scattering
- Energy Lost
- Conclusions

LUCITE Hodoscope

Results of Monte Carlo simulation presented in December 2005 SANE meeting

Date 09/12/2005

SANE Collaboration Meeting,
August 26, 2006. JLAB

Lucite Bar Test with Cosmic

SANE Collaboration Meeting,
August 26, 2006. JLAB

Radiation of Cosmic Muons in Lucite

Sizes:

UVT Lucite - 80x6x3.1 cm ${ }^{3}$
Det1, Det2 - 10×10×1 cm ${ }^{3}$, scintillator
Two lead bricks: $T_{\mu}>168 \mathrm{MeV}$
Lucite is wrapped in black paper.
There is no white reflector.
$\mathrm{n}=1.49$
TIR angle $=42^{\circ}$
$\beta=0.923$
Cherenkov angle: $\cos \theta=1 /(n \beta), \theta=43^{\circ}$

PMT-Lucite interface

Interface is made of optical grease.
The geometrical efficiency of the interface is about 75\%

Light Collection Efficiency

Do we lose more light? YES!
This is were observed reflections come from. Adiabatic light guide is needed?
Or/and the face cut must be at different than 90° angle?

Test with Cosmic

If we tilt the bar by 2°, then TIR will not take place and one of PMTs will not get primary cherenkov light

Trigger: $\mathrm{M}=(\operatorname{Det} 1 \times \operatorname{Det} 2) \times(\mathrm{PMT} 1 \times$ PMT2) Signals for ADC and TDC analysis: PMT1 and PMT2

Trigger Electronics and DAQ

SANE Collaboration Meeting,
August 26, 2006. JLAB

Results of Analysis

- TDC distributions:

SANE Collaboration Meeting,
August 26, 2006. JLAB

Results of Analysis (cont.)

- Z - distribution:

SANE Collaboration Meeting,
August 26, 2006. JLAB

Results of Analysis (cont.)

Extracted Z-position

SANE Collaboration Meeting,
August 26, 2006. JLAB

Results of Analysis (cont.)

Tilted Lucite (6º

Z coordinate, pos. 15 , cm

Z coordinate, pos. $15 \mathrm{p}, \mathrm{cm}$

Z coordinate, pos.8p, cm

SANE Collaboration Meeting,
August 26, 2006. JLAB

Results of Analysis (cont.)

Position measured vs reconstructed

Errors are included

Detector is tilted by 6°

SANE Collaboration Meeting,
August 26, 2006. JLAB

Results of Analysis (cont.)

Reconstruction uncertainty:
$\sigma_{\text {total }}=5.2$ at the position \#7 (center) and 6.0 to the edges
detector size is +-5 cm
$\sigma_{\text {reconst }}=\operatorname{SQRT}\left(\sigma_{\text {total }} \wedge 2-\mathrm{d}_{1} \wedge 2\right)$

$$
\sigma_{\text {reconst }}=1.5 \mathrm{~cm}-3.3 \mathrm{~cm}
$$

Results of Analysis (cont.)

- ADC distributions:

SANE Collaboration Meeting,
August 26, 2006. JLAB

Results of Analysis (cont.)

SANE Collaboration Meeting,
August 26, 2006. JLAB

Single Electron Peak

Using blue LED:
$<\lambda>=470 \mathrm{~nm}$

Pulse duration: 15 nsec Repetition rate $\sim 100 \mathrm{~Hz}$ Trigger: pulse generator Timing cut: +/-5 nsec

SANE Collaboration Meeting,
August 26, 2006. JLAB

Conclusions: results of the cosmic test

- Number of Photoelectrons for vertical events:
$260 / 26=10$ to $1200 / 26=46$ for 3.1 cm .
We expect with light guides 650/26=25 p.e.
- The PMT XP2268 we were using, had low quantum efficiency. We ordered a new PMT XP2020 for test, it did not arrive yet.
- Use of adiabatic light guides is mandatory.
- Tapered shape of the bar maybe optimal for light extraction.
- Coordinate resolution of the hodoscope is $1.5 \mathrm{~cm}-3.3 \mathrm{~cm}$
- The resolution is worse at the edges due to reflections and due to angles of particles other than 90°. We have discussed with St. Gobain about possible curving the bars by $+-6^{\circ}$.

Influence of the Hodoscope on Energy and Coordinate Resolution

Multiple Scattering and
Energy Lost of e^{-}in the material:

- Target exit windows
- Gas Cherenkov
- windows
- mirror
- Lucite

Influence of the Hodoscope on Energy and Coordinate Resolution (cont.)

Simple Estimation: Multiple Scattering (M.S.)
$\mathrm{E}_{\mathrm{e}}=1000 \mathrm{MeV}$
$\langle\theta\rangle_{\text {Al }}=6 \times 10^{-4} \mathrm{rad}$
$<\theta\rangle_{\text {glass }}=2 \times 10^{-3} \mathrm{rad}$
$\langle\theta\rangle_{\text {lucite }}=4 \times 10^{-3} \mathrm{rad}$
M.S. in lucite will add an additional coordinate uncertainty at the calorimeter face, of the order of 3.5 mm to the lead glass which is

$$
\Delta X=\frac{6 \mathrm{~mm}}{\sqrt{E(G e V)}}
$$

Adding quadratically, we obtain 7 mm total for $\mathrm{E}_{\mathrm{e}}=1 \mathrm{GeV}$ SANE Collaboration Meeting,

August 26, 2006. JLAB

Influence of the Hodoscope on Energy and Coordinate Resolution (cont.)

Total reconstructed uncertainty at the target level will be worsen by +-0.5 cm due to the multiple scattering in Lucite.

Energy Lost takes place mainly due to cascade development in the material (lucite)

$$
\begin{array}{rll}
\Delta E & =\int_{0}^{0.11} \frac{d E}{d t} d t & b=0.5 \cdots 0.7 \\
\frac{d E}{d t} & =E b \frac{(b t)^{a-1} e^{-b t}}{\Gamma(a)} & \\
& Z=3 b+1 \\
& C_{5} O_{2} H_{8}
\end{array}
$$

Total energy deposit for $\mathrm{E}_{\mathrm{e}}=1000 \mathrm{MeV}$ is 5.5 MeV in lucite The angular divergence of the cascade is in the order of $\mathrm{mc}^{2} / \mathrm{E}_{\mathrm{e}}$ which gives an additional $0.5 \times 10^{-3} \mathrm{rad}$,

Conclusions

- Do we need to do beam test? Maybe yes.
- Number of Photoelectrons for vertical events: 650/26=25 for 3.1 cm with proper light guides
- Coordinate resolution of the hodoscope is 1.5-3.4 cm, Beam test would confirm this number.
- The resolution is worse at the edges due to reflections and due to angles of particles other than 90°
- Total energy deposit for $\mathrm{E}_{\mathrm{e}}=1000 \mathrm{MeV}$ is 5.5 MeV in lucite.
- Estimated total reconstructed uncertainty at the target level will be worsen by +-0.5 cm due to the multiple scattering in Lucite.

