Cerenkov Detector for SANE presented by Seonho Choi **Temple University** SANE Collaboration March 26, 2004

Overview

→ Goal

- High electron detection efficiency
- Pion rejection of at least 1000:1
- Consideration of strong target magnetic field
- Insensitivity to beam background events

→ Design parameters

- Operation at about atmospheric pressure (slightly over pressure)
- Radiator: dry nitrogen at 20°C, n=1.000279
- Pion momentum threshold: 5.9 GeV
- Electron momentum threshold: 21.6 MeV

- Total radiator length: 1.5m
- 50cm from the target center
- Material
 - flat sheets of Al with frame reinforcement or
 - non-magnetic stainless steel
 - 2 in Pb wall shield for beam pipe
- Windows
 - thin front window of tedlar for light seal
 - interior polymer window for gastight seal

Ray Tracing

- 8 mirrors cover an area
 71 cm (H)× 147 cm (V)
- Each mirror: ~36cm (H) × 37cm (V) Tilted 11° w.r.t. the beam
- Radius of curvature: 80cm
- Phototubes
 - 2 inch tubes
 - 30° outward from central plane

Study of the Light Focusing

Target Field Effect

- \rightarrow Field map measured for ± 100 cm in z and ρ up to 100cm
- → Extrapolation beyond measurement
 - Approximation of the magnet by a current loop at large distance

$$B_{r}(r,\theta) = \frac{\mu_{0}I}{2} \frac{a^{2}}{r^{3}} \left[P_{1} - \frac{3}{2} (\frac{a}{r})^{2} P_{3} + \frac{15}{8} (\frac{a}{r})^{4} P_{5} - \frac{35}{16} (\frac{a}{r})^{6} P_{7} + \cdots \right]$$

$$B_{\theta}(r,\theta) = \frac{\mu_{0}I}{4} \frac{a^{2}}{r^{3}} \left[P_{1}^{1} - \frac{3}{4} (\frac{a}{r})^{2} P_{3}^{1} + \frac{5}{8} (\frac{a}{r})^{4} P_{5}^{1} - \frac{35}{64} (\frac{a}{r})^{6} P_{7}^{1} + \cdots \right]$$

- Parameters fitted using measured field at r >40cm
- Residual field at the PMT's: 67 to 103 gauss
- Need to design/test a good magnetic shield for the tubes

Btotal

Btotal

Btotal

Photoelectrons

Photoelectrons(cont.)

Expected number of photo electrons for a 150 cm $N_{\rm 2}$ radiator

Window	dN/dz (cm ⁻¹)	Naïve	Actual*
	(200nm - 650nm)	total pe's	total pe's
Quartz	0.199	29.9	24.2
UV Glass	0.169	25.4	20.5
Borosilicate Glass	0.0908	13.6	11.0

* Including 90% reflectivity of the mirror and 90% transmission at the gas-window interface

Summary

- → Draft design with full ray trace finished
- → Planned tests with phase 1 proto-type
- → Full simulation with GEANT in progress
- Need integration of design/installation of Cerenkov and UVa target
- → Finalize the design and build phase 2 proto-type
- → Instrumentation proposal to DOE or NSF

