SANE Update on Backgrounds

Oscar A. Rondon SANE Collaboration Meeting March 26, 2004 Jefferson Lab

(Version updated after meeting)

Backgrounds in SANE

- Two sources of background
 - Target
 - Beam Line
- Target backgrounds
 - Processes that compete with or imitate inclusive inelastic (e,e') scattering
 - Three main sources
 - Bethe-Heitler (bremsstrahlung) into e^+e^- : very small angle with respect to beam ~ m_e^-/E ; not a concern for SANE. Møller not important, either.
 - π^0 decays: $\pi^0 \to \gamma e^+ e^- (1.2\%)$ and $\pi^0 \to \gamma \gamma (99\%)$: SANE's main concern
 - π misidentified as e: contamination
 - Other particle decays into e^+e^- or e^- : small probablity, will neglect.
- Beam line backgrounds
 - separate issue

Effect of Target Background on Asymmetry Measurement

- Target background for SANE is mostly e⁺e⁻ pairs: BETA is charge sign insensitive, detects both.
- The measured electron asymmetry A_m must be corrected for the counts N_b and possible asymmetry A_b coming from the target background
- Need to estimate or measure both the background rate and asymmetry
- Estimate background from previous measurements
- Measure positron rates in charge sign sensitive HMS

$$\begin{split} A_{m} &= \frac{(L-R) + (L_{b} - R_{b})}{N_{m}} = \frac{(N_{m} - N_{b})A + N_{b}A_{b}}{N_{m}} \\ A &= \frac{A_{m} - f_{b}A_{b}}{1 - f_{b}}; \quad f_{b} = \frac{N_{b}}{N_{m}} \\ \delta A^{2} &= \frac{1}{(N_{m} - N_{b})^{2}} \Big[(N_{m}\delta A_{m})^{2} + (N_{b}\delta A_{b})^{2} \\ &+ \Big(\frac{A_{m} - A_{b}}{N_{m} - N_{b}} \Big)^{2} \Big((N_{m}\delta N_{b})^{2} + (N_{b}\delta N_{m})^{2} \Big) \Big] \\ &= \frac{1}{(1 - f_{b})^{2}} \Big[(\delta A_{m})^{2} + (f_{b}\delta A_{b})^{2} + \Big(\frac{A_{m} - A_{b}}{1 - f_{b}} \Big)^{2} (\delta f_{b})^{2} \end{split}$$

 $N_{m} = L_{m} + R_{m} = N + N_{h}$

π^0 Related Backgrounds

- π^0 Dalitz decay: $\pi^0 \rightarrow \gamma e^+ e^-$
 - 1.2% branching ratio
- $\pi^0 \rightarrow \gamma \gamma$
 - $\ \gamma \longleftrightarrow e^+ e^-$
 - 99% branching ratio*X₀
 radiation thickness from target to detector*2 γ's
 - SANE $< X_0 >= 0.138$
- Effective Dalitz pairs $\geq 29\%$ of π^0
 - (P. Bosted CLAS-Note 2004-005)

Material in front of

BigCal	g/cm ²	X0		
Target cell	0.689	0.016		
Target windows	0.156	0.007		
Cherenkov windows	0.076	0.002		
Cherenkov gas	0.156	0.004		
Lucite	4.425	0.109		
Sub Total	5.502	0.138		
Thickness yet to be defined				
Cherenkov mirrors				
BigCal front cover				
Lucite gain monitor				

Background Simulation in Proposal

- Charge-symmetric processes from π⁰ decays (simulated by G. Warren)
 - SLAC e⁺e⁻ parameterization
- Reduce positron rates by increasing energy threshold to E' > 1.3 GeV
 - Lose some low x range at low Q^2
- Measure ratio of rates in HMS.
- Measure ratio of asymmetries using events with γ , $\gamma\gamma$ and e^+e^- in BETA
- Hadron backgrounds measured by ignoring Gas Cherenkov in trigger

e⁺/e⁻ Pairs in CLAS's eg1b (I)

- Report by P. Bosted on e+e- and pion backgrounds
- Relevance for SANE:
 - 5.7 GeV data vs 6 GeV SANE
 - 34.7 ° and 41.1 ° vs 40 ° SANE
 - *E'* range 0 3.6 GeV
- π^0 decay photons convert to e+ewith probability $X_0 \approx 7/9$
- Dalitz decays add a 0.006 probability (½ of branching ratio)
- Good model agreement with clean e+ data at lower *E*'

e⁺/e⁻ Pairs in CLAS's eg1b (II)

- Comparison of SANE and eg1b
 - very similar kinematics = similar π^0 production rates
- eg1b effective radiator:
 - 0.014 $X_0 = 0.008 X_0 + \frac{1}{2}$ Dalitz
- SANE effective radiator:
 - 0.144 $X_0 = 0.138 X_0 + \frac{1}{2}$ Dalitz
- SANE and eg1b* X_{0SANE}/X_{0eg1} seem to agree, but X_0 for SANE OK?
- e+ rates are substantial
 - main issue is e+ asymmetry

e+/e-rates					
E = 1 GeV					
θ	eg1	SANE	eg1*SANE X0		
36	0.13	1.23	1.3		
40	0.1	0.58	1		
44		0.26			
E = 1.35 GeV					
θ	eg1	SANE	eg1*SANE X0		
36	0.02	0.485	0.2		
40	0.01	0.167	0.1		

e⁺/e⁻ Pairs in CLAS's eg1b (III)

- SANE, eg1b cover same *W* range
- e+ asymmetry seems < ~20% of e-
- Uncertainty in asymmetry < ~ 100%
- Uncertainty in rate ratio ~ 30%
- Using SANE's e+/e- rates, eg1b's A_m
 - dilution size at low x confirms need for cut
 - moderate errors for df/f = .3

SANE 80°

- For SANE 80°
 - e+/e- rates same as for $0^{\circ}(?)$
 - E155x E' > 9 GeV
 - e+/e- < ~ 0.02
 - $A_{\rm b}/A_{\rm m}$ ratio:
 - E155x set $A_{e+} = 0$ (low statistics)
 - further study needed

- Preliminary comparison of SANE simulation to CLAS results on pairsymmetric backgrounds agree within 50%-100%
- More detailed comparisons should be helpful
- Background impact on asymmetry can be controlled with E' > 1.3 GeV cut
 - price is loss of low *x* range
- Lucite seems important source of positron conversions
 - need to optimize thickness in terms of error contributions from backgroundasymmetry vs background rate
- HMS rate measurements should be planned taking into account improved background estimates and 80° data needs
 - Proposal estimate is ~75 h at 6 GeV parallel asymmetry
 - may need HMS data during 80° data for comparison with parallel