Plans for Solid Čerenkov Detector

M. Khandaker

SANE Collaboration Meeting
September 24, 2004

- ullet Reference Detector Design
- Test Plans and Schedule
- Personnel and Funding Options
- PMT Options for Quartz Detector

Solid Čerenkov Detector

• Purpose:

- provide additional and efficient electron detection
- sufficient position resolution to support limited tracking back to the target cell

• Reference design:

- X-Y Lucite (n=1.49) Čerenkov Hodoscope operating in total internal reflection mode
- -X $(1.25 \times 80.0 \times 12.5 \ cm^3)$ 16 bars
- $\ Y (2.50 \times 12.5 \times 160. \ cm^3) \ \ 8 \ bars$

• Position Resolution:

 $-for~a~(12.5 imes 12.5~cm^2)~square~area \sim \ref{3.6}~cm$

• Number of Photoelectrons:

- Temple/Hampton Lucite detector \sim 18 PE's as eta
ightarrow 1

Plans Status and Schedule

• Prototype Detector Tests: Nov'04 - Jan'05

- get PE yields with Lucite from cosmics or in-beam tests
- procure a single quartz bar and do PE tests
- Material decision:

Feb '05

- Lucite, Quartz, or high-index Glass
- Final design and procurement: Mar'05 Aug'05
- Detector construction: Sep'05 Jan'06

Personnel and Funding

- Personnel:
 - Addition of a postdoc (part time) from UVA
- Cost estimate and funding:
 - Lucite with borrowed electronics and Hall C engineering support $\sim \$50k$
 - $-Quartz \sim \$150k$
 - need to seek external funding
 - $-\ will\ have\ \$50k\ from\ Hampton\ PFC\ for\ half\ postdoc$

PMT Options for Quartz Detector

- Silicon PMT:
 - novel type of APD
 - insensitive to magnetic fields
 - $-high~gain\sim 10^6$
 - good quantum efficiency $\sim 66\%$ at $\lambda = 550$ nm
 - excellent timing resolution ~ 120 ps for single photoelectron detection
 - fast risetime ~ 1 ns
 - achieves good dynamic range $\sim 10^3/mm^2$
 - does not exhibit any serious radiation damage effects
 - $-low\ bias\ voltage \sim 50-60\ V$
- SiPM's performance comparable to a traditional PMT