Update on Target Vacuum Can

Shigeyuki Tajima

Apr. 21, 2005

- Design of OVC for SANE, Semi-SANE, and the compton experiment
- Need to determine window locations and dimensions
- Need to decide which can is used

SANE Magnet Configuration (Target field at 180 deg)

SANE Magnet Configuration (Target Field at 80 deg)

Kinematics for SANE, Semi-SANE, and Compton experiments (Apr. '05)

	Beam Energy (GeV)	BETA energy (GeV)	BETA Angle (deg)	$\begin{gathered} \mathrm{P}_{\mathrm{HMS}} \\ (\mathrm{GeV} / \mathrm{c}) \end{gathered}$	HMS angle (deg)	Target Field	Run type
SANE	$\begin{gathered} 4.8,6.0 \\ 6.0 \\ 2.4 \end{gathered}$	$\begin{gathered} 0.8-2.2 \\ -- \\ \text { I.3-I. } 8 \end{gathered}$	$\begin{aligned} & 40 \\ & -- \\ & 40 \end{aligned}$	$\begin{aligned} & \text { I.0-I. } 7 \\ & \text { I.I-I. } 7 \end{aligned}$	$\begin{aligned} & 36-44 \\ & 33-48 \end{aligned}$	$\left\lvert\, \begin{array}{cc} \prime \prime & \perp \\ & / / \\ \\ & \prime \prime \\ \hline \end{array}\right.$	Production $e^{+} B G$ Calibration: ep elastic
Semi SANE	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.75-2.0 \\ & 0.75-\text { I. } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 13.1 \end{aligned}$	// //	Production Parasitic
Com pton	$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 25 \\ & 82 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 39 \\ & 12 \end{aligned}$	off //	Production Calibration: ep elastic Production

Estimating Window Dimensions

- Ray-trace program was used to calculate the effect of particle deflection due to the target field
- Find the region where the particles intersect the OVC wall when they are detected in BETA (or HMS)
- Detect Electrons (0.7-3.0GeV) in BETA
- HMS momentum range depends on each kinematics (momentum is as low as IGev/c)

Target Window Openings (Apr. 2005)

Window locations and dimensions (Apr 2005)

- Window dimensions (in cm) estimated using a ray-trace program
- OVC with the outer radius of 46.0 cm

New / Existing Vacuum Cans

I. Gen can (Too many windows exist)
2. SLAC can (Two large windows exist)
3. Blue can (smaller windows only)
4. New fresh can (would cost $\sim \$ 40$ k)

1. Recycling the Gen Can

- Used in Hallc in 2001-2002
- Wall thickness is linch
- Too many windows already exist and they don't match with our window design
- A portion of the existing window must be filled, but that may cause a leak problem.
- Not practical to recycle the Gen can

2. Recycling the SLAC Can

- Used at SLAC (now it's at JLab)
- Outer radius of 46 cm , wall thickness 9 mm
- Two large windows (I2in diameter) and two small windows (4in diameter) exist
- Locations of the existing windows do not match well with our window design
- This can is not the best choice.

3. Recycling the Blue Can

- Identical dimensions as the SLAC can (Outer radius 46 cm , wall thickness 9 mm)
- One 'smile' window ($10 \times 2 i n$) and two small windows of 2in diameter
- This window pattern matches with our projected window design
- The detailed calculation is needed to prove/ disprove that the 9 mm wall is thick enough.
- Cost of recycling this can might be comparable to that of a NEW can (according to P. Brindza)

4. Making A New Fresh Can

- Wall thickness would be made as thick as possible
- It would cost $\sim \$ 40 \mathrm{k}$ according to P. Brindza
- Windows can be made even larger; this can could still be used when kinematics is changed after the can is fabricated.
- Need to check if Hallc has enough money.

Target Window Openings (Apr. 2005)

Summary

- Window dimensions and locations are recalculated and updated.
- This window design is not final yet.
- Need to decide either to make a new can or try to recycle the blue can.

