Cherenkov counter for SANE

Readiness Review

- Goal:
 - High electron detection efficiency
 - Pion rejection of at least 1000:1
- Reference design
 - Operation slightly above atmospheric pressure
 - Radiator: dry nitrogen at 20°C, n=1.000279
 - → Pion momentum threshold: 5.9 GeV.
 - Electron momentum threshold: 21.6 MeV
 - → Windows: Tedlar/Aluminum
 - → Mirrors cover an area 71 cm (H)x 150cm (V) (8 mirrors)
 - Point-to-point focusing of the mirrors for electrons > 0.7 GeV from target cell to phototube

Ray trace simulation

- Shielding
- Radiation
- Accessibility

All the tubes on the large angle side of the counter Top view Spherical Toroidal Side view Front view

> 99 % efficiency

Cherenkov Counter Overview

- 4 -spherical mirrors
- 4 -toroidal mirrors (365x430 mm)
- 8 -3" quartz photonis phototubes (XP3468)

Mirrors (3mm thick) held on one side and can rotate in the horizontal and vertical planes

Two orientations of tubes pointing to

Near mirror (spherical)

→Far mirror (toroidal)

Electron detection efficiency and pion rejection

Number of Quanta per nm Wavelength per cm Track Length

- Radiator Nitrogen
- Radiator length 125 cm
- Quartz window phototube:

~20 pe including gas transparency, mirror reflectivity (90%), Fresnel reflection at the phototube window

Geant Simulation (whitney Armstrong)

Setup in the Hall

- Distance of front window to the target: 50 cm
- Length of box: 155 cm
- Horizontal/vertical aspect ratio 2:1
- 71 cm (H) x 150cm (V) back window area.

Stand with height adjustment

8" of lead shielding 36 radiation lengths

Status of Cherenkov construction

- Mechanical construction
 - Phototubes holders with μ -metal shield fabricated and received
 - Mirrors mounts + side holders received
 - ✓ Full tank structure received
 - ✓ Tedlar and mylar front and back windows received (under tests)
- Mirrors manufacturing
 - ✓ Glass substrate from Eagle Glass Co.
 - Spherical and Toroidal mirrors received and shipped to CERN
 - Reflective coating performed at CERN reflectivity measured and found to be better than 80% at 160nm.
 - ✓ We expect them shipped back to Temple by Late July.

Tank fabrication finished and tank at Temple

Mirrors holders fabricated and received

Phototube mount

 The pointing of the face of the tube can be adjusted from outside

Magnetic Shielding

Based on a 3" diameter cylinder and a maximum 300G DC field,
Amumetal (80% Nickel) 0.125" thick provides better than 50:1 reduction

Tests done at Temple consistent with these predictions.

J. Hoburg, IEEE Transactions on Electromagnetic Compatibility Vol. 37, No 4, November 1995

support ring pointing ring

µ-metal shield Extends from the face of the tube by 2inches

Spherical mirrors as well as toroidal mirrors received from Eagle Glass Inc. (West Virginia) and shipped to CERN.

Aluminization finished at CERN with the following performance: Reflectivity greater than 80% at 160 nm (4+1 spare)x2 Mirrors awaiting shipment back to Temple

Reflectivity (spherical mirrors)

Reflectivity (toridal mirrors)

Electronics Setup

Cerenkov Electronics for SANE

Can use geometrical correlation of each mirror with Bigcal blocks

Correlation of BigCal with the Cherenkov Mirrors

Gas System

- Dry nitrogen at sligthly above atmospheric pressure (768Torr).
- About five fills per standard bottle of compressed gas (total volume of the tank 1.73m³).
- Constant monitoring of the pressure with feedback control using Capacitance manometer (1/10 of a Torr resolution) to maintain the pressure.
 - Overpressure will be vented into the atmosphere.
 - ➡ The safety valve will be opened at 774 Torr
 - ➡ (Jlab safety limit is 775.72 Torr = 15 psi)
 - Underpressure is dynamically corrected using an automated control valve to fill.
- We assume 1 kPa (7.5 Torr) daily fluctuation (drop) requires 15 liters of gas (0.53 ft³)
- Worst case a drop of 8 kPa (60 Torr) in case of a storm.
- The windows are tested for these maximum variations

Manpower

- Temple group:
 - Alex Lukhanin,
 - Whitney Armstrong,
 - Brad Sawatzky
 - Z.-E.M

The group will provide the man power to test and setup the Cherenkov counter initially but operation should be straigthforward

Schedule

•At Temple:

Receiving and setting up the mirrors + alignment at Temple in July

Gas system with tank will be tested for a period of a month in August.

Electronics + High voltages setup + data acquisition will be setup and tested in August- early September.

➡Detector ready to be moved to JLab September 2007 for setup and testing on site.

•At Jlab:

→Platform design and procurement for testing this fall with GEPIII (July-August)

Electronics + High voltages setup + data acquisition will be setup and tested in September.

➡ Preparation of lead shielding July-August.

Draft Design of the Counter

- Draft design with 50% efficiency on half of the detector if we use 3" tubes everywhere.
- Two type of phototubes
 - 3" tubes
 - 5" tubes
- Modular design
- Flexible for quick changes and alignment

Top view of the counter

TOP VIEW EXPLODED

1 METER

Pion and proton of electron knock-on probabilities

