Initial State Helicity Correlation in Wide Angle Compton Scattering E05-101

Donal Day and Bogdan Wojtsekhowski, co-spokespersons

Readiness Review July 2, 2007

"Merely due to lack of available beam time, the PAC recommends that only the kinematic point in the backward hemisphere be measured." PAC28

Approved with A- rating for 14 days.

Introduction & Motivation

Compton Scattering off nucleons provides information on the substructure of nucleon in terms of quark and gluon d.o.f. \rightarrow extremely complicated

Compton scattering in various kinematical regions

- low energy \rightarrow dominated by nucleon as a whole
- deeply virtual CS; low | t |, large Q²→ handbag diagram involving skewed parton distributions
- 'wide angle' CS; low Q², large |t| and s ensures dominance of short distance behavior
- What is the reaction mechanism?

What is the reaction mechanism?

- 2 hard gluons
- 3-body "form factor"

- 1 active quarks
- 0 hard gluons
- 1-body "form factor"

- Which, if either, dominates at few GeV?
- We will be able to distinguish among competing mechanisms

Physics Goals

- Measure A_{LL} (never been measured) at two scattering angles: $\theta^{\gamma}_{CMS} = 70^{\circ}$ corresponding to -t = 2.4 (GeV/c)² and $\theta^{\gamma}_{CMS} = 140^{\circ}$ corresponding to -t = 6.4 (GeV/c)²
- Provide an experimental test of the RCS reaction mechanism: does the photon interact with a constituent or a current quark?
- Provide an additional test for hadron helicity conservation and pQCD

Experimental Layout

4.8 GeV electrons $E_{\gamma} = 4.3 \text{ GeV}, \ s = 9 \text{ GeV}^2$ $\theta^{CMS} = 70^{\circ}, \ 140^{\circ}$

kin P#	t (GeV/c)2	θγ ^{lab} degree	θγ ^{cm} degree	θ _p ^{lab} degree	Ey ^{lab} GeV	P _P GeV/c	L	θ∨ ^e degree	θ _V p degree
P1	-2.4	25	70	39	3.00	2.02	7	1/7	4.1
P2	-6.4	82	140	12	0.87	4.25	2.8	15.4	0.6

kin P#	Procedure	Beam nA	time hours	
P1	RCS data	90	176	
P2	RCS data	90	240	
	Packing Fraction	90	8	
	Moller	200	10	
	Target Anneals		30	
	Stick Changes		18	
	e-p elastics		30	
	Allocated	<mark>14 days</mark>	336	
	Requested		506	

Transition from SANE to WACS

- Remove Cherenkov
- Remove Tracker
- Position BigCal
- Rotate HMS
- Modify trigger (HMS)
- Reconfigure chicane for longitudinal running
- Replace He bag with standard beam pipe
- Checkout radiator

Transition can be done in \approx 4–5 days

SANE at 40°

WACS

Collaboration

P. Bosted, J. P. Chen, E. Chudakov, K. DeJager, R. Ent,
R. Feuerbach, J. Gomez, D. Gaskell, O. Hansen, D. W.
Higinbotham, T. Horn, M. Jones, J. LeRose, D. Mack, R.
Michaels, S. Nanda, A. Saha, S. Wood, B. Wojtsekhowski
Thomas Jefferson National Accelerator Facility

G. Cates, D. Crabb, D. Day R. Lindgren, N. Liyanage, V. Nelyubin, B. Norum, O. Rondon, K. Slifer, K. Wang, X. Zheng, M. Commisso, J. Maxwell, J. Mulholland, V. Mayman, University of Virginia

A.M. Nathan, University of Illinois

A. Mkrtchyan, H. Mkrtchyan, T. Navasardyan, A. Shahinyan, V. Tadevosyan, H. Voskanyan, Yerevan Physics Institute

D. Nikolenko, I. Rachek, Yu. Shestakov, Budker Institute, Novosibirsk

A. Lukhanin, Z.–E. Meziani, B. Sawatsky, Temple University

P. Markowitz, Florida International University

M. Khandaker, V. Punjabi, F. Wesselmann, Norfolk State University B. Crowe, B. Vlahovic, North Carolina Central University, Durham

A. Ahmidouch, S. Danagoulian, C. James, M. Jones, S. Vilayoung, North Carolina A&T State University

C. Glashausser, R. Gilman, X. Jiang, G. Kumbartzki, R. Ransome, Rutgers,

E. Piasetzky, G. Ron, Tel Aviv University

C. Perdrisat, L. Pentchev, College of William and Mary

C. Hyde-Wright, A. Radyushkin, Old Dominion University

D. Margaziotis, California State University Los Angeles

G. Huber, C. Butuceanu, Regina