SANE

Spin Asymmetries on the Nucleon Experiment (TJNAF E07-003)

SANE Collaboration

U. Basel, C. Newport U., Florida International U., Hampton U., Norfolk S. U., North Carolina A&T S. U., Ohio U., IHEP-Protvino, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., Temple U., TJNAF, U. of Virginia, College of William & Mary, U. of the Witwatersrand, Yerevan Physics I.

Spokespersons: S. Choi (Seoul), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Readiness Review July 2, 2007 Jefferson Lab

SANE Readiness Review

- Overview of SANE's physics
- SANE kinematics and CEBAF energy: Impact on statistics
 - Beam time
 - Energies vs polarization
- SANE layout and BETA detector
 - Readiness Summary
 - BigCal calibration
 - Polarized target
 - Beam line
 - Beam line background rates and shielding
- Manpower
- Safety documents
- Simulation and reconstruction software

SANE Physics

• Measure proton spin structure function $g_2(x, Q^2)$ and spin asymmetry $A_1(x, Q^2)$ at four-momentum transfer $2.5 \le Q^2 \le 6.5$ GeV² and Bjorken $x \ 0.3 \le x \le 0.8$

REPORT TO THE NUCLEAR SCIENCE ADVISORY COMMITTEE

2011 Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV² for the proton, and the neutron, and the deep inelastic scattering polarized structure functions $g_1(x, Q^2)$ and $g_2(x, Q^2)$ for x=0.2-0.6, and $1 < Q^2 < 5$ GeV² for both protons and neutrons.

- **SANE meets or exceeds DOE 2011 Milestone for Proton Spin Structure**
 - SANE takes data no later than 2008
- JLAB is unique facility for measuring complete transverse spin structure

SANE Physics

- Learn all we can about proton SSF's from inclusive polarized measurement:
 - twist-3 effects from moments of \boldsymbol{g}_2 and \boldsymbol{g}_1 : $\boldsymbol{d}_2 = \int_0^1 x^2 (3 \boldsymbol{g}_2 + 2 \boldsymbol{g}_1) dx$
 - comparisons with Lattice QCD, QCD sum rules, bag models, chiral quarks
 - Study *x* dependence (test nucleon models) and Q^2 dependence (evolution)
 - Exploration of "high" x region: A_1 's approach to x = 1
 - Test polarized local duality for final state mass W > 1.4 GeV
- Method:
 - Measure anti-parallel and near-perpendicular spin asymmetries
 - Detect electrons with novel large solid angle electron telescope **BETA**

Transverse Spin Structure Function

• Polarized longitudinal structure function has simple parton model interpretation

$$\boldsymbol{g}_{1}(\boldsymbol{x}) = \sum e_{i}^{2} \Delta q_{i}(\boldsymbol{x}), \quad i = u, \overline{u}, d, \overline{d} \dots$$

• g_2 is combination of twist-2 and twist-3 components:

$$g_{2}(x,Q^{2}) = g_{2}^{WW}(x,Q^{2}) + \overline{g}_{2}(x,Q^{2})$$

$$= -g_{1}(x,Q^{2}) + \int_{x}^{1} g_{1}(x',Q^{2}) \frac{dx'}{x'} - \int_{x}^{1} \frac{\partial}{\partial x'} [\frac{m}{M} h_{T}(x',Q^{2}) + \xi(x',Q^{2})] \frac{dx'}{x'}$$

- Wandzura-Wilczek g_2^{WW} depends on g_1 ; h_T is twist-2 chiral odd transversity
- ξ represents quark-gluon correlations (twist-3)
- Transition from free partons to interacting quarks and gluons

Transverse Spin Structure Sum Rules

• OPE: moments of $\boldsymbol{g}_1, \boldsymbol{g}_2$ related to twist-2 (\boldsymbol{a}_N) , twist-3 (\boldsymbol{d}_N) matrix elements.

$$\int_{0}^{1} x^{N} g_{1}(x, Q^{2}) dx = \frac{1}{2} a_{N} + O(M^{2}/Q^{2}), \qquad N = 0, 2, 4, \dots$$

$$\int_{0}^{1} x^{N} g_{2}(x, Q^{2}) dx = \frac{N}{2(N+1)} (d_{N} - a_{N}) + O(M^{2}/Q^{2}), \qquad N = 2, 4, \dots$$

• d_{N} measure twist-3 contributions (related to for $m \ll M$ and h_{T} not too large.)

$$\boldsymbol{d}_{2}(\boldsymbol{Q}^{2}) = 3\int_{0}^{1} x^{2} \overline{\boldsymbol{g}}_{2}(x, \boldsymbol{Q}^{2}) dx = \int_{0}^{1} x^{2} (2 \boldsymbol{g}_{1} + 3 \boldsymbol{g}_{2}) dx$$

- Burkhardt-Cottingham
 - not from OPE
- Efremov-Leader-Teryaev
 - valence quarks combining with $g_{2,1}^{n}$ from Hall A

$$\int_{0}^{1} g_{2}(x) dx = 0$$

 $\int_{0}^{1} x(g_{1}^{V}(x)+2g_{2}^{V}(x))dx=0$

SANE Expected Results

• SANE expected errors for $\overline{d}_2 = \int_{xmin}^{xmax} x^2 (2g_1 + 3g_2) dx$

- $\delta \overline{d_2} / d_2 (Q^2 = 3 \text{ GeV}^2) = 4\%, \quad 0.29 < x < 0.85$
- $\delta \overline{d_2}/d_2(3.5 \text{ to } 6.5 \text{ GeV}^2) = 2.5\%, \quad 0.41 < x < 0.96$

SANE Expected Results (Ia)

SANE Expected Results (II)

- x dependence at constant Q^2 and Q^2 dependence at fixed x (illustrative binning)
- data are concentrated in the region most sensitive to $x^2g_{2,1}$
 - (estimates based on 75% beam and target polarization and 85 nA beam current)

SANE Expected Results (III)

- Constrain extrapolations of A_1^p to x = 1 within +/-0.1 (using duality)
- Both \mathbf{A}_{\parallel} and \mathbf{A}_{\perp} are required to get accurate, model-free $\mathbf{A}_{1}: \mathbf{A}_{2} > 0$
- SANE's measured A_2 will contribute to improve world's A_1 data set

World data on A_{\parallel} , A_{\perp} and SANE kinematics

Beam Energy < 6 GeV

Exp.	<q2></q2>	xlo	xhi	statistical error	
	GeV ²			d2bar	_
SANE 6 GeV	3.12	0.28	0.74	3.6%	
	4.07	0.39	0.95	2.4%	
	4.89	0.50	0.96	3.4%	
	5.91	0.64	0.93	6.7%	
SANE 5.7 GeV	3.12	0.29	0.85	3.1%	
	4.06	0.41	0.96	2.2%	
	4.99	0.53	0.96	4.0%	
	5.89	0.69	0.92	10.0%	
SANE 6 GeV	5.23	0.39	0.95	2.2%	Mean of top 3 Q ² pts
SANE 5.7 GeV	5.19	0.41	0.94	2.4%	"

5.3 vs 5.7 GeV beam

Beam Time

	Energy	θ _N	Time (h)	
Calibration	2.4	off, 0, 180	60	(Full and ½ field)
Production	4.8	180	70	
	4.8	80	130	Target rotation
	6.0	80	200	-
	6.0	180	100	Target rotation
Systematics	Packing	Fraction	20	
	Mollers		21	
	Total bea	am time	601	
Overhead	Anneals		62	
	Energy C	Change	48	
	Target R	otation	48	
	Insert Ch	nanges	48	
	Total Ov	erhead	206	
_				

Commissioning

14 calendar days

Total

70 calendar days

Energy vs Polarization

На	ll #of passe	En s (N	ergy 1eV)	optimized	Color Code					
Lina	ac	1170.	27		Optimal setting based on maximum pola selected halls					
А	5	5917.	18	*	Optimal setting based on maximum pola minimized pain					
в	5	5917.	18 '	*						
С	2	2406.	37							
1	Source Angle	Theta-A	Theta-B	Theta-C I	Pol-A(%)	Pol-B(%)	Pol-C (%)	Figure o Merit		
	0.00	63.90	61.10	7.28	94.84	-95.13	-64.27	0.9499		
	5.00	63.93	61.13	7.31	97.24	-92.08	-57.34	0.9470		
	10.00	63.95	61.16	7.33	98.91	-88.33	-49.99	0.9377		

SANE 4.8 GeV: magic 4-pass energy Halls A and B 5.9 GeV: magic 5-pass energy (below)

SANE 2.4 GeV (calibration): no beam polarization; Halls A and B 5.9 GeV: magic 5-pass energy (above)

Ha	I # of pas	ses Ener	gy (MeV)) optimiz	ed			Color Code
Lina	ic	1170	.27		Optima	al setting t	based on m	aximum polar
А	5	5917	.18	*	Optima	al setting b	based on m	aximum polar
В	5	5917	.18	*				
С	4	4746	.91	*				
Sou	rce Angle	Theta-A	Theta-B	Theta-C	Pol-A(%)	Pol-B(%)	Pol-C (%)	Figure of Me
	0.00	63.90	61.10	35.98	94.84	-95.13	99.85	0.9663
	5.00	63.93	61.13	36.01	97.24	-92.08	99.95	0.9648
	10.00	63.95	61.16	36.04	98.91	-88.33	99.29	0.9564

Energy vs Polarization (II)

н	all #0	f E	nergy	ontimizer	i.		Color	Code	Linac	1200	.00		Optimal	setting base	d on maxin	num polarization to
	an pass	es (l	MeV)	optimzet			COIO	Code	A 5	6067	.50	*	Optimal	setting base	d on maxin	um polarization an
Lir	nac	1170).27		Optimal	setting bas	ed on ma	cimum polarizati	B 5	6067	.50	*				
				2	Optimal	nans setting bas	ed on may	cimum polarizati	C 5	6067	.50	*				
A	5	5917	7.18	*	minimiz	ed pain	ou on ma			TL.4. A	TL . 4- D	The C	D-1 4(0/)	D-1 D/0/)	B-1 C (0/)	Firmer () Fault
в	5	5917	7.18	*					Source Angle	1 neta-A	62.65	50 78	FOF-A(%)	15 05	77 71	0 5226
С	5	5917	7.18	*					5.00	65.55	62.65	59.78	15 14	-43.55	82.90	0.5763
Se	ource Angl	e Theta-A	Theta-F	R Theta-C	Pol-A(%)	Pol-B(%)	Pol-C (%)	Figure of Merit	10.00	65.58	62.71	59.84	23 70	-60.67	87.46	0.6296
	0.00	63.90	61.10	58.30	94.84	-95.13	58.22	0.8453	15.00	65.60	62.74	59.87	32.07	-67.37	91.35	0.6810
	160.00	64.79	61.99	59.19	-78.28	99.94	-82.52	0.8742	20.00	65.63	62.76	59.89	40.21	-73.55	94.55	0.7295
	162.04	64.80	62.00	59.20	-80.45	100.00	-80.45	0.8745	25.00	65.66	62.79	59.92	48.03	-79.18	97.03	0.7744
	162.01	64.80	62.00	59.20	-80.42	100.00	-80,48	0.8745	30.00	65.69	62.82	59.95	55.49	-84.20	98.77	0.8150
								· · · · ·	35.00	65.72	62.85	59.98	62.53	-88.58	99.76	0.8507
									40.00	65.74	62.87	60.01	69.10	-92.29	99.98	0.8811
									45.00	65.77	62.90	60.03	75.13	-95.29	99.45	0.9059
N			5 10		10 0 10 0				50.00	65.80	62.93	60.06	80.60	-97.57	98.16	0.9247
1		agic	3-р	ass e	nerg	gy			55.00	65.83	62.96	60.09	85.45	-99.11	96.13	0.9375
	2	t 5 C	$\mathbf{)17}$	GeV					60.00	65.85	62.99	60.12	89.65	-99.89	93.36	0.9440
	a		1/		•				62.65	65.87	63.00	60.13	91.61	-100.00	91.60	0.9449
SA	NE r	need	s 75	% et	fect	ive.			62.67	65.87	63.00	60.13	91.62	-100.00	91.59	0.9449
~				•	· · ·	,			65.00	65.88	63.01	60.14	93.17	-99.92	89.88	0.9442
0	r >9(J% r	otat	1011	acto	pr.										
Or	1x 5	nace	z m	anic	oner	σv		In he	11 10 010		tion					
U	пу Э.	-pass	5 1110	igic		бУ		111-fia	in pola	ITZa	lion	l IIII]	ριον	62	/	
		is 4.	23 (GeV				wi	th ener	·gv >	> 5.9	917	GeV	7		

with energy > 5.917 GeV

SANE Layout

Big Electron Telescope Array - BETA

- **BigCal** lead glass calorimeter: main detector, being built for *GEp-III*.
- Gas Cherenkov: additional pion rejection
- Tracking Lucite hodoscope
- Tracking fiber-on-scintillator **forward hodoscope**
- BETA's characteristics
 - Effective solid angle = 0.194 sr
 - Energy resolution 5%/ $\sqrt{E(GeV)}$
 - 1000:1 pion rejection
 - vertex resolution $\sim 5 \text{ mm}$
 - angular resolution ~ 1 mr
- Target field sweeps low *E'* background
 - 180 MeV/c cutoff

Readiness Summary

Subsystem	P	arts	Construction/Assembly		Tests		Preparation for SANE		
	In hand	On order/procurement	Prototype/design	Full	Lab	In Hall	Conditioning	Repairs	Other
BigCal	All			Ready	Completed	Fall '07	UV Glass anneal		
Gain Monitor		Lucite plate	Tested	Fall '07	Completed	Fall '07	Visual inspection	Plate change (?)	
Cherenkov	Tank, PMT's, Mirrors (arrive from CERN Jul. 07)	readout electronics	Tested	Sept. 07	July-Aug. 07	Fall '07			Alignment
Lucite tracker	prototype bars	arrive end of July 07	Tested	AugDec. 07	JanFeb. 08	Spring 08			Alignment
Forward tracker	All		Tested	July-Sept.07		Fall '07			Alignment
Target	Magnet, refrigerator, microwaves, NMR, pumps, ammonia	OVC Can, inserts		Oct '07	NovDec. 07	June '08			Installation June '08
Target platform	GEn-01/RSS platforms			June '08					Preinstall pumps, control platform Jan-Feb. '08
Beam line	Upstream girder/chicane, rasters, BCM's, BPM's, SEM (ready at Basel)	Downstream extension & He Bag: Design complete Aug. 07; Order in Fall 07		June '08	Slow raster: Summer 07; Check low current BPM's	June '08			Preinstall in-hall dump Jan- Feb. 08
Beam line shielding		Simulations/Design completed Aug. '07 Order in Fall 07		June '08					Installation
HMS						June '08	Restore standard package		Cosmic tests
Trigger/DAQ	All BigCal modules, Cherenkov will use spare	HKS programmable logic as backup		Fall '07		Fall '07			
Online reconstruction	BETA simulation		Track reconstruction	Feb. '08	March-May 08	June '08			

SANE Subsystems (I)

- BigCal Calorimeter for *GEp-III* (M. Jones):
- Device ready for installation in Hall
- Extensive calibration with *ep* elastics:
 - SANE is inclusive experiment
 - on-line monitoring with π^0 reconstruction
 - Lucite plate gain monitor
- Needs glass annealing for SANE
- SANE collaborators plan taking shifts during *GEp-III* to gain BigCal experience
- Basic BigCal Trigger for SANE (P. Bosted):
 - AND *GEp-III* BigCal Trigger with Cherenkov OR
 - Backup solutions if higher than expected rates are available

Elastic Calibration (i)

- **BigCal Energy Calibration:** - e+p elastic coincidences with p 100 detected in HMS, NH_3 target, 1 μA 75 one pass with target field off 50 two passes with full field on, pointing in opposite directions along beam, 25 two passes with 1/2 field on Û 2-pass, <u>2.32</u> GeV beam; no deflection -25 90% coverage of BigCal (5 passes; — -5075% with 3 passes) -75• 52 h (5 passes, 100% efficiency) 33 h (3 passes); $\leq 5\%$ statistics ·100
- Continuous π^0 mass reconstruction

Elastic Calibration (ii)

- BigCal Energy Calibration:
 - e+p elastic coincidences with p detected in HMS, NH₃ target, 1 μ A
 - one pass with target field off
 - two passes with full field on, pointing in opposite directions along beam, two passes with ½ field on
 - 2-pass, <u>2.46</u> GeV beam; no deflection
 - 90% coverage of BigCal (5 passes; 75% with 3 passes)
 - 60 h (5 passes, 100% efficiency)
 36 h (3 passes); ≤ 5% statistics
- Continuous π^0 mass reconstruction

Elastic Calibration (iii)

BigCal Energy Calibration: - e+p elastic coincidences with p 100 detected in HMS, NH_3 target, 1 μA 75 one pass with target field off 50 two passes with full field on, pointing in opposite directions along beam, 25 two passes with 1/2 field on Û 2-pass, <u>2.46</u> GeV beam; no deflection -25 90% coverage of BigCal (5 passes; — -5075% with 3 passes) -75• 60 h (5 passes, 100% efficiency) 36 h (3 passes); \leq 5% statistics ·100 Continuous π^0 mass reconstruction

Elastic Calibration (iv)

- BigCal Energy Calibration:
 - e+p elastic coincidences with p detected in HMS, NH₃ target, 1 μ A
 - one pass with target field off
 - two passes with full field on, pointing in opposite directions along beam, two passes with ½ field on
 - 2-pass, <u>2.46</u> GeV beam; no deflection
 - 90% coverage of BigCal (5 passes; 75% with 3 passes)
 - 60 h (5 passes, 100% efficiency)
 36 h (3 passes); ≤ 5% statistics
- Continuous π^0 mass reconstruction

BigCal's neutral pion mass reconstruction

- Use π^0 mass reconstruction to continuously calibrate BigCal and
 - calibrate blocks not covered in e+p elastic procedure (~10%)
 - measure asymmetry with >0.7 GeV/c threshold to control the pair symmetric background
- GEANT simulated π^0 events in BETA: sigma ~ 10 MeV

SANE Status - Subsystems (II)

- Temple U.'s modular design of gas Cherenkov (Z-E. Meziani):
 - eight mirrors coated at CERN: 80% UV reflectivity
 - eight 3" PMT's plus spare on hand
 - shielded for 50:1 magnetic field reduction
- Frame built by Alpha Tool (NJ) delivered
- Used only Temple's grant funds

SANE Status - Subsystems (III)

- Forward tracking hodoscope
 - Next to target OVC, much improved tracking resolution vs. reference design
 - covers full BETA solid angle with small device (40 cm x 22 cm)
 - charge sign separation for momenta < 1 GeV/c, background rate ~ 10 kHz/bar
 - Wavelengh shifting fibers glued on 3 mm scintillator bars
 - 73 vertical bars (*x*-coordinate)
 - 2 planes of 133 horizontal bars (*y*-coordinate, ½ bar width overlap)
 - Readout by five 64-anode PMT's (Hamamatsu H7546B), on hand
 - All 339 TDC channels available; all 370 bars on hand
 - Ribbon cables on hand, signal cables on order
 - Prototype tested, full device tests Fall 2007.

SANE Status - Subsystems (IV)

- Lucite Hodoscope
 - 28 80(L) x 6 (W) x 3.8 (T) cm³ horizontal curved bars with angled ends
 - all bars, light guides on hand by end of July 2007
 - Sixty 2" PMT's (at both bar ends) on hand, shields on order
 - Need 56 electronics channels (TDC, discriminator, ADC, HV, cables)
 - Frame in fabrication
 - Prototype tested in Spring 2007, construction 07-12/2007
 - In beam tests March 2008

SANE Status - Subsystems (V)

- Polarized target (D. Crabb):
 - multi-use outer vacuum can (OVC) in fabrication (SANE, Semi-SANE, WACS)
 - Nitrogen shield in fabrication
- 4 months fabrication, Lab tests, 6 weeks installation in Hall
- Target window covers: M. Seely and P. Bosted will design for ease of placement/removal/access to forward tracker
- Target material: On hand (some irradiated past week)
- Optimizing tailpiece, insert and 4K shield design

Residual Target Field

SANE Status - Subsystems (VI)

- Upstream beam line:
 - Girder with chicane
 - Rasters: fast and slow
 - BPM's and BCM's
 - Target Beam Position Monitor (Secondary Emission Monitor):
 - needed to determine beam raster position (1 cm radius spiral)
 - refurbished at U. Basel, ready to ship.
 - Radiator for WACS
- Downstream beam line:
 - He gas bag plus short beam pipe section
 - minimal modification of E-01-006 (RSS) design
 - In-hall beam dump as in GEn-01 and RSS

Beam Line Background Studies

- Top and side views
- Field at 80 degrees
 - Red: electrons, Blue: photons
- .MCWORKS code (P. Degtiarenko) and BETA GEANT (G. Warren)

Beam Line Background Studies

Beam line background studies using simulation package of Pavel Degtiarenko.

- *Parallel field:* no problems with BETA at 40°.
- *Transverse field:* a large fraction of electrons escape pathologically into BETA:
 - expect at most 200 kHz/PMT for Gas Cerenkov.
 - Pileup, trigger rates, detector rates all remain manageable.
 - These numbers are conservative...
 will probably have a reduction of at least 2 in Cerenkov rates.

Beam Line Background Studies

As a result of background in transverse mode:

- increase online CAL threshold to 900 MeV to bring trigger rate < 1kHz. *No impact on physics*.
- Slightly increased pileup: 0.8% above 10 MeV, but 0.01% above 50 MeV.
- Increased accidentals between gas Cerenkov and CAL: < 5%, *but uncertainty in correction will be* <0.5% *of true rate*.

Rates in BETA

All Rates in kHz

Gas Cerenkov (> 20 MeV)

Field	Е	e	π^-	Trig
180	4.8	28.1	242.0	30.5
80	4.8	1590.0	223.0	1592.2
180	6.0	25.3	255.0	27.9
80	6.0	1510.0	236.0	1512.4

Calo	rimeter (>	900 Me\	/)	
Е	e	π^{-}	π °+N	Trig
4.8	0.3	1.0	7.2	8.5
4.8	0.3	1.0	7.1	8.4
6.0	0.3	1.1	8.1	9.5
6.0	0.3	12	8 0	94

BETA Trigger Rates Accd True Е offline A/T 0.38 0.0% 4.8 0.03 0.38 1.34 0.5% 4.8 0.03 0.39 0.0% 6.0 6.0 0.39 1.43 0.5%

SANE Manpower: Collaboration

Initial	Name	Institution	Initial	Name	Institution	Initial	Name	Institution
J.	Jourdan	BASEL	J.	Dunne	MSU	A.	Lukhanin	Temple
M.	Kotulla	BASEL	A.	Ahmidouch	NCAT	<u>W.</u>	<u>Armstrong</u>	<u>Temple</u>
I.	Sick	BASEL	S.	Danagoulian	NCAT	ZE.	Meziani	Temple
E.	Brash	CNU	C.	James	NCAT	B.	Sawatzky	Temple
E.	Jensen	CNU	<u>M.</u>	Jones	<u>NCAT</u>	M.	Bychkov	UVA
A.	Marsh	CNU	S.	Vilayoung	NCAT	M.	Commisso	UVA
W.	Boeglin	FIU	M.	Khandaker	NSU	D.	Crabb	UVA
S.	Dhamija	FIU	F.	Wesselmann	NSU	D.	Day	UVA
Ρ.	Markowitz	FIU	P.M.	King	Ohio	E.	Frlez	UVA
J.	Reinhold	FIU	J.	Roche	Ohio	K.	Kovacs	UVA
I.	Albayrak	Hampton	A.M.	Davidenko	Protvino	N.	Liyanage	UVA
E.	Christy	Hampton	Y.M.	Goncharenko	Protvino	V.	Mamyan	UVA
C.	Keppel	Hampton	V.I.	Kravtsov	Protvino	<u>J.</u>	<u>Maxwell</u>	<u>UVA</u>
V.	Tvaskis	Hampton	Y.M.	Melnik	Protvino	J.	Mulholland	UVA
Ρ.	Bosted	JLab	V.V.	Mochalov	Protvino	D.	Pocanic	UVA
JP.	Chen	JLab	Α.	Vasiliev	Protvino	О.	Rondon	UVA
V.	Dharmawardarne	JLab	C.	Butuceanu	Regina	K.	Slifer	UVA
R.	Ent	JLab	G.	Huber	Regina	L.C.	Smith	UVA
D.	Gaskell	JLab	V.	Kubarovsky	RPI	L.	Pentchev	W&M
J.	Gomez	JLab	R.	Gilman	Rutgers	S.H.	Cowell	Witwatersrand
D.	Higinbotham	JLab	Х.	Jiang	Rutgers	M.M.	Dalton	Witwatersrand
M.	Jones	JLab	S.	Choi	Seoul	G.	Mbianda-Njencheu	Witwatersrand
D.	Mack	JLab	<u>Ho-young</u>	Kang	<u>Seoul</u>	A.	Asaturyan	Yerevan
G.	Smith	JLab	Hyekoo	Kang	Seoul	A.	Mkrtchyan	Yerevan
B.	Wojtsekhowski	JLab	Byungwuek	Lee	Seoul	H.	Mkrtchyan	Yerevan
S.	Wood	JLab	Yoomin	Oh	Seoul	V.	Tadevosyan	Yerevan
			Jeongseog	Song	Seoul			

19 institutions - 76 confirmed names

2 PhD students - 2 MS students

SANE Manpower: Subsystems

Subsystem	Component	Manager	Experts	Institution
<u>BigCal</u>	Operation	L. Pentchev	M. Jones Protvino Yerevan	William & Mary Hall C Protvino Yerevan P. I.
	Trigger	R. Gilman	X. Jiang P. Bosted	Rutgers U. Rutgers U. Hall C
	Gain Monitor Calibration	E. Frlez G. Huber	O. Rondon	UVA U. Regina UVA
<u>Gas Cherenkov</u>		Z-E. Meziani	B. Sawatzky O. Lukhanin	Temple U. Temple U. Temple U.
Forward Tracking Hodoscope		M. Khandaker	P. Bosted C. Butuceanu	Norfolk S.U. Hall C U. Regina
Lucite Hodoscope		A. Ahmidouch	S. Danagoulian	North Carolina A&T S.U. North Carolina A&T S.U.
<u>Polarized Target</u>		D.G. Crabb	D.B. Day K. Slifer M. Seely C. Keith G. Smith	UVA UVA JLab JLab Hall C
<u>Beam Line</u>	Raster BCM Target BPM -SEM	J. Dunne	Chen Yan D. Mack M. Steinacher UVA	Mississippi State U. Hall C Hall C Basel UVA
<u>Shielding design</u>		S. Choi	H-Y.Kang	Seoul National U. Seoul National U.
<u>HMS</u>		H. Mkrtchyan	Yerevan Hall C C. Keppel	Yerevan P. I. Yerevan P. I. Hall C Hampton
Moller		D. Gaskell	Hall C	Hall C Hall C
BETA Simulation		J. Maxwell	O. Rondon	UVA UVA

Shift and Run Coordinator Staffing

- Run duration: 70 calendar days
 - 3 staff/shift
 - 630 workers-shifts
- Expect 53 of 75 collaborators to be shift workers (9 experts only, 9 grad. students, 4 undergraduates)
 - standard 10 shifts load
 - 530 worker-shifts
 - 9 graduate students 12 shifts ea.
 - 108 additional shifts
- M. Khandaker to be shift czar
- Shift load assigned per institution
 - each institution distributes shifts

- Run coordinators
 - Rotation: once/week
 - 10 weeks run
- 8 confirmed or likely coordinators identified
 - senior staff or associates with polarized target experiment experience
- Need 3 more (one relief)
 - Target operators (TO):
 - need 210 TO shifts
 - 50 UVA student shifts, 70 expert shifts
 - need to train 9 additional operators

SANE Safety Documents

- Existing polarized target COO and ESAD for *RSS* (E-01-006) and *GEn-01* (E93-026) to be updated
 - include current version of Hall C base equipment material
 - add safety assessment for BigCal from *GEp*-III (E04-109)
 - new safety assessment for Cherenkov, Lucite Hodoscope and Forward tracker
 - update polarized target for new platform configuration
- Existing RSAD document for *RSS* is base for SANE RSAD
 - almost identical beam energy, luminosity, beam deflections, beam line
 - preliminary radiation budget submitted with Beam Request (9/14/2006), on file
- Additional shift directives, run coordinator duties, manuals to be updated from *RSS* documents

Simulation and Reconstruction Software

- Existing GEANT simulation of BETA being updated to include hodoscopes
- Reconstruction software reconstructs energy deposited in blocks, coordinates of cluster
- Track reconstruction code from detector coordinates in forward tracker, Lucite hodoscopes in development
- Existing *GEp*-III BigCal code (reconstruction and simulation) will be used, looking into integration in common package
- Off-line code will be based on simulation reconstruction package

SANE Status - 7/2007

- Thirteen collaboration meetings since 11/2003, latest on 3/30/2006
- Submitted Beam Request on 9/14/06
- Hall C schedule: SANE tentatively to install in 5/2008, start in 7/2008
 - Time lines show adequate lead time for 2008 run

SUMMARY

Steady progress over 4 years Can install in 8 weeks by end of GEp-III Dedicated and diligent collaboration + full Lab support = Success SANE is pioneering spin physics with large non-magnetic detectors