# $\mathsf{LD}_2$ Target Thickness Analysis for EG2

Xiaochao Zheng Medium Energy Physics, Argonne National Lab July 25, 2003

## Overview

### The cell

- 2-cm LD<sub>2</sub> cell, 1.3 atm;
- Goal: thickness uncertainty < 1%.

#### **Error Sources**

- Density  $\rho = \rho(P,T)$ ;
- Absolute cell length measurement;
- Thermal contraction of cell wall (Kapton);
- Endcap bulging;
- Beam position drifting;

#### **References**

- R. Prydz, NBS report on The Thermodynamic Properties of Deuterium, (1967);
- R.F. Barron, Cryogenic Systems, (1985);
- Tests done at JLab: S. Christo, D. Kashy.

## Density

- Pressure sensor: dP = 0.005P + 50 mbar= 56.6 mbar @ 1.3 atm;
- Temperature sensor: dT = 50 mK (calibration);
- Subcooling:
  - From LD<sub>2</sub> test (with super insulation), observed no bubbling at 1.3 atm,
     24.49 K (interpolated), this means no subcooling needed;
  - Plan: 1 K subcooled (to be confirmed), i.e., condenser set at 23.55 K, hence dT = 0.5 K due to subcooling;
- From (P, T) to density (NBS report):
  - Two methods: equation of State, fit to data;

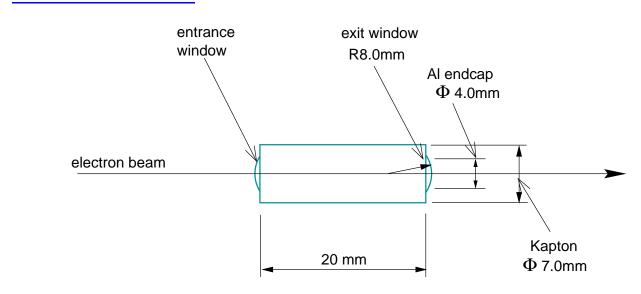
| Method          | ρ                    | $\partial  ho / \partial T$ | $\partial  ho / \partial P$ |
|-----------------|----------------------|-----------------------------|-----------------------------|
|                 | (g/cm <sup>3</sup> ) | (g/cm <sup>3</sup> /K)      | (g/cm <sup>3</sup> /bar)    |
| Eq. of State    | 0.1620 ×(1± 0.80%)   | -0.0026                     | 0.213                       |
| Fit to NBS data | 0.1621 ×(1± 0.74%)   | -0.0024                     | -0.285                      |

- Take the larger value 0.80% as a conservative estimation of uncertainty in deuterium density due to dP and dT;
- Error in NBS data: 0.15% (typical).

Absolute cell length measurement

•  $dL = 80 \mu m$ , i.e., 0.4% to target thickness;

## Kapton Thermal Contraction


- Kapton thermal contraction coefficient from 300 K to 78 K:
  - 31.13 ppm/K measured at JLab;
  - 21.4 ppm/K from Dupont;
- From 78 K to 22 K (non-linearity of thermal contraction)
  - Data on Kapton not available;
  - Using existing data of various plastic materials;
  - Estimate total shrinkage from 300 to 22 K
    - $\approx (1.13 \pm 0.03) \times$  shrinkage from 300 to 78 K;
- Total:

 $\frac{L(300K) - L(22K)}{L(300K)} = (26.45 \pm 4.67) \text{ ppm} \times (300 - 78) \times (1.13 \pm 0.03)$  $= (0.667 \pm 0.135\%)$ 

 $\Rightarrow$  contribute 0.135% to target thickness.

## Endcap bulging

- Cell length (body + exit window) measured from 0 to 1.5 atm;
- Exit window average 0.206 mm;
- Error of the measurement: 3  $\mu$ m device, 5  $\mu$ m fluctuation  $\Rightarrow \approx$  0.01 mm;
- Assuming the same deformation for the entrance window;
- Contribute 0.1 % to target thickness.



#### • Take dL/L = 0.4%, corresponding to 1.13 mm drift from center.

#### Beam position drifting

# Summary

| Source               | Uncertainty in Thickness |  |
|----------------------|--------------------------|--|
| dP and $dT$          | 0.823%                   |  |
| $\rho = \rho(P,T)$   | 0.15%                    |  |
| Absolute cell length | 0.4%                     |  |
| Kapton contraction   | 0.135%                   |  |
| Endcap shape         | 0.10%                    |  |
| Beam position        | 0.40%                    |  |
| Local bubbling       | 0.00%                    |  |
| Total                | 1.005%                   |  |