
HIPO Data Format Performance Compared to ROOT

Gagik Gavaliana

aJefferson Lab, Newport News, VA, USA

Abstract

In this paper, we present studies of the performance of High-Performance Output (HIPO) [1]
data format in writing and reading scientific data from Nuclear Physics experiments in
CLAS12 [2]. The performance of HIPO is compared to widely used in the high-energy
physics community data format of ROOT [3] files. Our studies show that HIPO reader and
writer codes in C++ and Java outperform ROOT by a significant margin.

1. Introduction

Modern High Energy and Nuclear Physics experiments produce an ever-increasing amount
of data. This represents challenges in data processing categorization and monitoring. Data
collected from experimental setups undergo several iterations of processing data to produce
an output that can be used for physics analysis. It is important to use a data storage format
able to read and write a large amount of data fast.

2. High Performance Output Data Format

In Nuclear Physics experiments data is stored in ”event” representing one interaction
of the beam with the target particle. Each event is a record containing variable-length
collections of data structures (called banks) each representing processed data from different
detector components. In CLAS12 the reconstructed particles stored in such structures are
used for the final physics analysis. The event from the data processing stage is processed
by data classifying algorithm to produce reduced outputs for each physics group containing
different physics event topologies. In CLAS12 experiments the data selection and reduction
process (called data trains) is run on a regular basis to provide users with updated data
samples to analyze. The data reduction process is primarily reading data, categorizing
a writing several data streams, and data both data reading and writing performance is
important. The High-Performance Output (HIPO) data format was developed at Jefferson
Lab for CLAS12 detector data processing applications. It is an event-based data container
with an indexed entry map that allows fast random access to any event in the file with
low latency. Two methods of compression are implemented by default for HIPO files: LZ4
and GZIP, for all the tests in this paper we used LZ4 compression due to its high rate of
compression and decompression. The HIPO format is used to store raw data information
from experimental data acquisition, then processed with a data processing application to
produce final physics data for analysis in the same file format. CLAS12 data processing

Preprint submitted to Elsevier December 5, 2022



program is using Service Oriented Architecture (SOA) [4] implemented in Java [5]. The
reconstructed data is analyzed using a ROOT-based analysis framework (clas12root) in C++.
HIPO supports C++ and Java (native) for reading files and Python. In this paper, we test
the performance of HIPO for both libraries (C++ and Java) and compare them to the
performance of ROOT Trees, which is the most commonly used data format in High Energy
and Nuclear Physics community for storing and analyzing experimental physics data.

3. Benchmark Code

To test the performance of each data format we used a file that contains only one data
structure describing the particles reconstructed from experimental data. The data contains
12 columns with particle momentum and vertex components and some auxiliary variables
such as : particle id, charge, beta, status, and particle id χ2. Each entry contains a variable
number of rows. The test consists of reading each entry in the tree then looping through
a number of particles in each entry and calculating some quantity which involves all the
columns in the bank and filling a histogram. The size of the file in each format (HIPO and
ROOT) is approximately 2GB, produced using the LZ4 compression algorithm.

The listing above shows ROOT code used to analyze the data using an improved im-
plementation of ROOT Tree [6] provided to the authors through private communications.
The code was translated to Java (almost exactly) to benchmark the performance of the
HIPO/Java library and was tested using GraalVM 17 platform. The benchmarks were
run on different platforms including M1, AMD, and Intel/Xeon architectures. We also run
benchmarks in two different scenarios where the data was read from NFS disks (AMD and
Intel/Xeon tests) as well as reading the data from the local SSD hard drive (all MacBook
tests). Several runs were performed with a warmup cycle, then an average of 10 tests was
taken to produce comparative plots.

4. Reading Benchmarks

To benchmark file reading performance we used a file from production data that was
filtered to contain only one structure (bank) that contains information on reconstructed
particles in the CLAS12 detector containing 7M events and a size of 2.1 Gb. The HIPO
file was converted to a ROOT file using code provided by the ROOT team and analyses is
run using the code described in the ”Benchmark Code” section. The benchmark is run on
different platforms and different environments to emulate standard everyday data processing
scenarios. The platforms used are:

• MacBook Pro 16, Apple M1 Max (reading from SSD)

• AMD EPYC 7502 32-Core Processor (NFS mounted luster)

• Intel(R) Xeon(R) CPU E5-2697A v4 @ 2.60GHz (NFS mounted luster)

• Macbook Intel i9 2018 (reading from SSD)

2



On MacBook computers, the data is read from a local SSD drive. The AMD and In-
tel/Xeon machines used in these benchmarks are part of the Jlab computing cluster and the
data is read from NFS-mounted disks. The results of benchmarks are shown in Figure 1,
where the execution time for each benchmark is shown in seconds.

Figure 1: Reading times for ROOT and HIPO compared for different platforms for C++ and Java. RNTuple
is used for ROOT with LZ4 compression.

Few observations can be made from the Figure. The analyses in Java are always faster
than code running in C++ using ROOT I/O. The HIPO C++ library outperforms ROOT
I/O significantly, peculiarly the difference in performance is architecture-dependent. On M1
and AMD architecture the HIPO is about 25%-30% faster than ROOT, on Intel architecture
the ROOT is more than twice slower. If we consider AMD and Intel tests are done in the
same environment of Jlab computer cluster in the same conditions of reading the files from
NFS disks, it’s surprising that HIPO performance is similar (±2%) while the ROOT I/O
performance changes dramatically (almost twice) going from AMD to Intel Xeon. Interest-
ingly Java library also performs the same on AMD and Intel architectures. These results are
very surprising and hard to explain.

5. Writing Benchmarks

The writing speed of the data format is important in different workflows of the data
analysis process, especially in I/O bound workflows. In CLAS12 we frequently process
the data through data ”trains”, where we create different data samples, depending on the
reconstructed event topology, for different experimental groups to analyze. The entire re-
constructed data set is processed and several (typically of the order of 14-18) separate data
sets are written to the disk. In these kinds of applications, the data writing speed is also
important since there is very little processing done by ”trains” other than checking if the
event matches some topology criteria and the majority of processing time is spent on reading
and writing.

3



We also run some tests to compare the performance of the ROOT I/O against HIPO
running in C++ and Java. The results can be seen in Figure 2.

Figure 2: Writing times for ROOT and HIPO compared for different platforms for C++ and Java. RNTuple
is used for ROOT with LZ4 compression.

The results show that the MacBook M1 has the best writing speeds due to its very fast
SSD. However, in all of the tests HIPO C++ and HIPO Java writers outperform ROOT
writers significantly. The surprise of this benchmark is that the writing speeds of ROOT
files on AMD and Intel Xeon architectures are not very different, as it was for reading speeds.
Both data formats use same LZ4 compression algorithms, and in general writing speed will
depend on level of compression requested from the library. For both samples we used highest
level of compression and we end up similar file size for both data formats, ROOT file being
slightly lagrger 2,119 MB vs 2,033 MB in HiPO data format.

6. Discussion

In this article, we tested the analysis performance when reading data from the ROOT
tree and HIPO data format. It was shown that HIPO outperforms ROOT on every tested
platform and due to ROOT Tree architecture dependence on Intel architecture, the difference
in performance is almost double. The writing tests show a significant (5-7 times) difference
in the file writing times. Moreover, analysis done in Java using the Java implementation of
HIPO data format outperformed analysis done using ROOT data format on all platforms
and in all ROOT tree implementations. Writing files in Java is also significantly faster
than writing ROOT trees. At the early stages of CLAS12 software development, the data
was converted to ROOT for final analysis, which leads to significant empty computation
cycles, and leads to data structures that are slower to process. With the development
of CLAS12ROOT package (in C++) the HIPO files can be easily read into the ROOT
environment and analyzed using data analysis and visualization tools available in ROOT.

4



References

[1] G.Gavalian, “High Performance Output Data Format.” https://github.com/

gavalian/hipo.

[2] V. Burkert et al., “The CLAS12 Spectrometer at Jefferson Laboratory,” Nucl. Instrum.
Meth. A, vol. 959, p. 163419, 2020.

[3] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,”
Nucl. Instrum. Meth. A, vol. 389, pp. 81–86, 1997.

[4] V. Gyurjyan, D. Abbott, J. Carbonneau, G. Gilfoyle, D. Heddle, G. Heyes, S. Paul,
C. Timmer, D. Weygand, and E. Wolin, “CLARA: A contemporary approach to physics
data processing,” J. Phys. Conf. Ser., vol. 331, p. 032013, 2011.

[5] V. Ziegler et al., “The CLAS12 software framework and event reconstruction,” Nucl.
Instrum. Meth. A, vol. 959, p. 163472, 2020.

[6] J. Blomer, P. Canal, A. Naumann, and D. Piparo, “Evolution of the ROOT Tree I/O,”
EPJ Web Conf., vol. 245, p. 02030, 2020.

5

https://github.com/gavalian/hipo
https://github.com/gavalian/hipo

	Introduction
	High Performance Output Data Format
	Benchmark Code
	Reading Benchmarks
	Writing Benchmarks
	Discussion

