Photo-thermal Excitation

$$\Delta T = (E\mu_a/\rho c)$$

ΔT: Temperature rise

E: Energy density

μ_a: Absorption

ρ: Density

c: Heat capacity

$$\rho_{\text{fat}} = 0.85 \text{ g cm}^{-3}$$

$$\rho_{\text{dermis}} = 1.08 \text{ g cm}^{-3}$$

$$c_{\text{fat}} = 2.3 \text{ J g}^{-1} \text{ K}^{-1}$$

 $c_{\text{dermis}} = 3.5 \text{ J g}^{-1} \text{ K}^{-1}$

→ Because of low ρc, fat is a "sitting duck"

Fat and Water have nice "colors" in the NIR

Ratio of photothermal heating for fat vs. dermis

Ratio of the temperature rises

Selective Fatty Tissue Targeting

Monte Carlo Simulations:

Sebaceous gland (depth = 2.5 mm, radius = 1.0 mm n=1.45, μ_a =0.17 /mm, μ_s '= 0.58 /mm) below epidermis (n=1.4, μ_a =0.039 /mm, μ_s '= 0.79 /mm) and capillary layers (n=1.37, μ_a =0.04 /mm, μ_s '= 0.3 /mm) within 3.8 mm thick dermis (n=1.4, μ_a =0.035 /mm, μ_s '= 0.2 /mm) irradiated by focused beam (λ = 1200 nm r= 2 mm, focusing depth = 3.5 mm)

CH-selective Laser

Subcutaneous Fat Necrosis induced *in vitro* with a 1208 nm laser (LDH activity stain)

~ 1 mm

Laser-induced Fat necrosis

D. Manstein, MD PhD

Jlab FEL Experimental Aims

- 1. Selective photocoagulation of (1)subcutaneous fat, (2)sebaceous glands
 - Demonstrate feasibility (NTBC histology)
 - Determine wavelength dependence (PPTR spectroscopy with 7-12 μm fast detector)
 - Compare to tissue model predictions
- 2. Selective tissue ablation fatty tissue
 - Determine threshold fluence & slope efficiency as a function of wavelength, by mass loss
 - Histology

FEL Needs

- 3-5 days of beam access in 3(?) sessions
- Approx λ, power, pulsewidth combos:
 - 1100-1300 nm; 0-50 W; 0.1-60 sec
 - 1600-1800 nm; 0-100 W; 1-1000 ms
 - 2800-3300 nm; 0-1000 W; 1-1000 μs
- Beam control & beam diagnostics
- Some advice on safety, etc

Other Things We're Interested in Looking At

- Focused-beam tissue ablation
 - When does NIR ablation with a fs pulse train turn excimer-like?
 - Electron microscopic study in skin samples
- Amide II tissue ablation (6.45 μm)
 - Were Edward's observations with the Vanderbilt FEL due to mechanism, or limited power available?
- Multiphoton NIR photochemistry
 - Solution-phase action spectra for photosensitizer drugs, by 2 and 3-photon excitation
- UV action spectra