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Outline

• Applications of Ultrafast Lasers

Femtosecond Photoelectron Spectroscopy with Harmonics
Ultrafast electron dynamics femtosecond ablation

Femtosecond Ablation 
Development and implementation of MARS: a manufacturing
tool for photomask defect repair

Photoelectron Spectroscopy
Photovoltage experiments on MOS devices

• Potential Experiments on the FEL

Can we generate high harmonics?
High repetition rate small structures, very weak excited state
signals
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400 fs

Electron-phonon scattering time 400 fs
“heat” is generated

Electron-phonon scattering at GaAs surface

Pump-probe photoelectron spectroscopy

PRL 62, 815 (1989)

GaAs (110)

Probe photon 11 eV



WHAT ARE THE IMPLICATIONS FOR
FS ABLATION

• For laser pulses >> 1ps, ablation will be dominated 
by thermal processes I.e. the material will absorb light, 
heat up and evaporate.

• For laser pulses << 1ps, the material will be converted to a 
plasma on a time scale shorter than that required to emit 
phonons and generate “heat”

For femtosecond pulses the ablation process is
DIFFERENT



Photomask SEMs

Nanosecond laser
thermal process
metal splatter
poor resolution
glass damage

Chrome

glass

Femtosecond laser
non-thermal 
no metal splatter
no glass damage
high resolution



How masks are used to print chips

DUV light 248 nm, 193 nm

4X stepper lens

resist coated 
Si wafer

Circuit
patternphotomask

chrome layer

fused silica

As many as 
25-30 masks may be needed
to produce a chip
Cost/mask ~ >$100K

defect

defect



Advanced Photomask with Resolution Enhancements

Defect

Optical micrograph



SCANNED GAUSSIAN PROCESS
CCD camera Femtosecond light pulse
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Scanned Gaussian Tool in 
IBM’s Burlington Mask House



Ablation Resolution
sub 150 nm lines and dots Optical micrograph

0.75 0.75 micron



Ablation Resolution
Below the diffraction limit

SEM



Photomask Repair Comparison

Before After

248 nm transmitted light
optical images
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FEMTOSECOND DEPOSITION
TO “WRITE” MATERIAL

photomask

saturated organometallic
and carrier gas

400 nm, 100 fs

adsorbed organometallic
layer

Cr
CO

CO CO
CO

COCO

high intensity in 
focal region 
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laser light
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DEPOSITION SETUP
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1 micron
0.2 micron SEM

248 nm
trans light

365 nm 
refl. light





Laser pulsewidth
120 fs
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Data Shows that initial metal growth 
is achieved through photolytic 
decomposition of the Cr(CO)6

BUT, There’s More



MULTIPLE SCANS

365 nm reflected light SEM



adsorbed molecular
layer Cr (CO)6

Transparent substrate

metal

e e

Intense 400 nm fs pulse

•Electrons excited
by interaction of fs pulse
with metal

•Continued metal growth
through electron stimulated
dissociation

Transparent substrate

Electron mean free
Path ~ 1 micron
e flux = 3x1016/cm2sec

Laser induced e excitation enhanced at
asperities amplifies roughness

ee e e



100 nm width

Cr deposition on Au

100 nm



Model for Deposition

• On transparent substrates multiphoton absorption of 400 nm light 
in adsorbed molecule initiates decomposition and metal deposition

• Continued deposition is combination of multiphoton and thermal 
decomposition (in creation of line or patch) smooth metallic
deposits are observed

•On absorbing substrates:
•Intense femtosecond pulses excite electrons within the 
absorber

•Electron stimulated dissociation occurs laser induced
electron excitation is enhanced at asperities amplifies
roughness during continued metal growth



“Machining” of Deposited Patch

Deposited Cr 
patch

Section of patch removed with fs laser



Generation of 193 nm light
for ablation

photomask

30 fs 800 nm Ti:sapphire
laser

1 mJ/pls

2nd harm
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reflective objective
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Output at 
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Misoguti, Backus, Durfee, Bartels, Murnane,
Kapteyn, PRL, 87 013601-1 (2001)



Ablation with 30 fs 193 nm light pulses

Ablated line
Existing mask

feature



Femtosecond Photomask Repair

• Fs ablation provides significant improvement
in quality and placement of repair

• Both ablative and additive repair 

• High throughput, spatial control big win

• Machine presently operating in IBM’s BTV Mask House

• >108 $$ in mask value repaired



PHOTOVOLTAGE MEASUREMENTS
OF 

METAL OXIDE SEMICONDUCTOR STRUCTURES
USING PUMP-PROBE FS PHOTOELECTRON

SPECTROSCOPY
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IN A NUTSHELL:

High temp anneal oxygen vacancy formation

Electrons tunnel into defects and become trapped



Possible Experiments on
the FEL 

• Can we generate high harmonics on the FEL?

Emax= Ei +3.2 Up:      need temporally short IR pulse
Up= (e2E2)/(4mω2) high intensity (100’s µJ mJ)

• FEL could provide big advantage in repetition 
rate (103 – 104 ) to look at weak signals, 
small structures



ORGANIC LIGHT EMITTERS
Alq



SUMMARY

Applications of intense fs pulses to:
• photoelectron spectroscopy of excited states
• photovoltage measurements of MOS structures
• ablation and deposition photomask repair
manufacturing tool

Ideas for FEL related work
• High repetition rate high harmonic 
photoelectron spectroscopy of small structures
and weak signals


