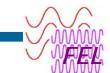
Optical Systems for the JLab FEL

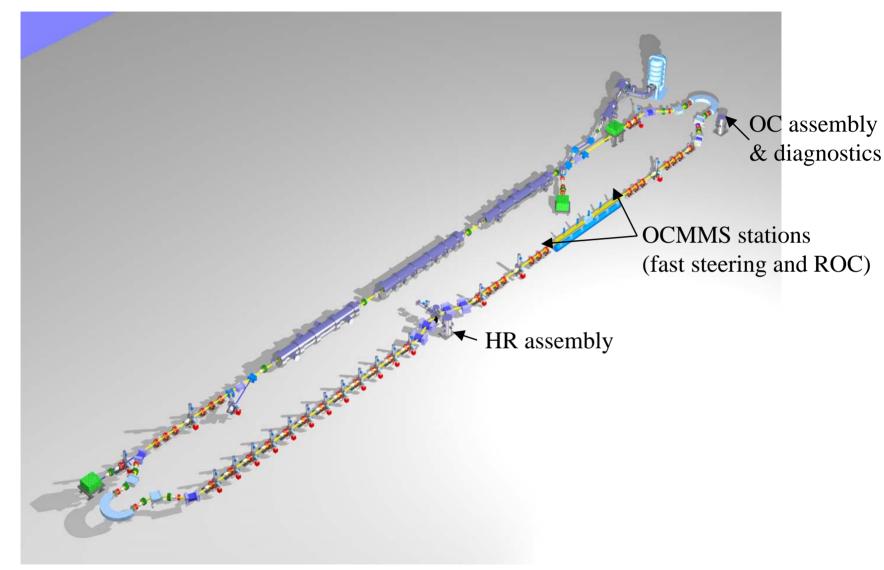
Michelle Shinn for the Optics Group

Laser Processing Consortium Meeting 9 March 2005

This work is supported by the Joint Technology Office, the Office of Naval Research, NAVSEA PMS-405, the Commonwealth of Virginia, the Air Force Research Laboratory, US Night Vision Laboratory, and by DOE Contract DE-AC05-84ER40150


Thomas Jefferson National Accelerator Facility

OUTLINE


- Present status of the IR Upgrade FEL Optical Subsystems
 - Optical cavity
 - Optical transport
 - Optical diagnostics
- Near-term upgrades
 - Extended power-handling
- Conclusions

efferson G

Thomas Jefferson National Accelerator Facility

IR UPGRADE OPTICAL CAVITY SYSTEMS

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

efferson G

OPTICAL CAVITY STATUS

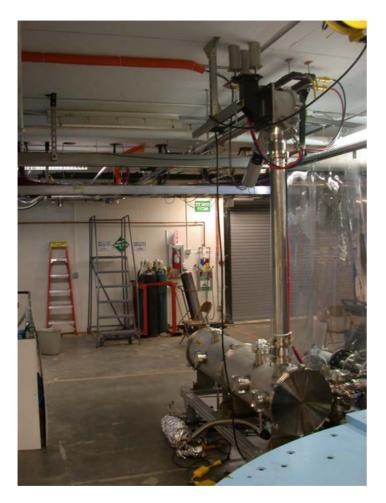
- We currently have optics for broadband and 1.06 micron operation installed.
 - Broadband optics are silver-coated silicon substrates, hole-outcoupled.
- We have optics on the shelf for high power output at 2.8 & 6 microns.
 - Will reconfigure optical cavity to take advantage of accelerator gradient.
- OCMMS (optical cavity mirror metrology system) installation complete week of March 7. Will then begin working to feedback on mirror position.

Thomas Jefferson National Accelerator Facility

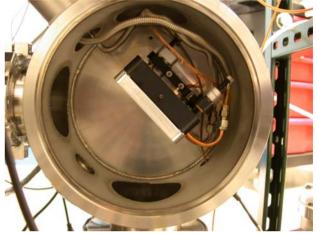
lerson C

OPTICAL TRANSPORT SYSTEM (OTS)

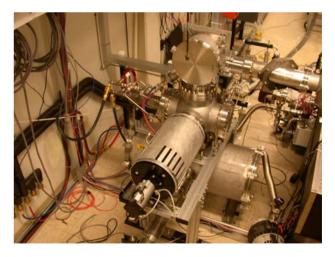
- IR Demo OTS used uncooled, silver-coated copper mirrors to transport beam.
 - Had to compensate for drift as absorbed power warmed the mirror mounts
 - We lost ~ 20% of the FEL output to absorption.
- We are commissioning OTS Lite
 - Collimate beam close to optical cavity.
 - All mirrors are water-cooled, to minimize drift.
 - Mirrors are silver-coated silicon, to improve beam quality.
 - Hole in Optics Control Room mirror transmits ~ $5x10^{-4}$ onto diagnostics table.
- We are building the components for OTS Standard
 - Collimator and mirror cassette style turning mirrors downstairs, to be optimized for different wavelength regimes.
 - Three dielectrically-coated, 1 silver-coated.
 - Backplane cooled Si turning mirrors.



Thomas Jefferson National Accelerator Facility


Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

ellerson C


FEL OPTICAL TRANSPORT COMPONENTS

Collimator and transport in vault

Water-cooled, actuated mirror can

UL 1 mirror cassette assembly

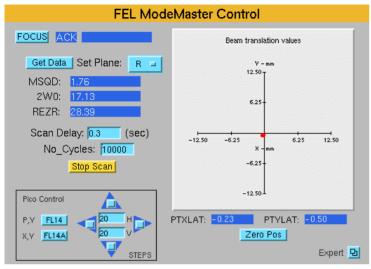
Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

ellerson C

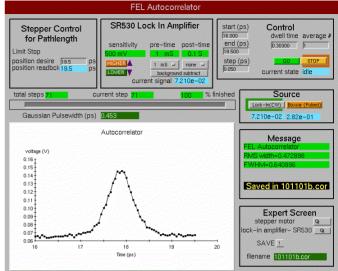
OTS STATUS

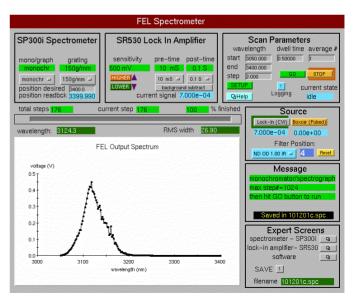
- We've received the turning mirror cassette hardware, and collimator can 1 assembly.
 - Collimator can 2 is in fabrication, we're beginning to assemble other hardware.

OPTICAL DIAGNOSTICS CAPABILITIES

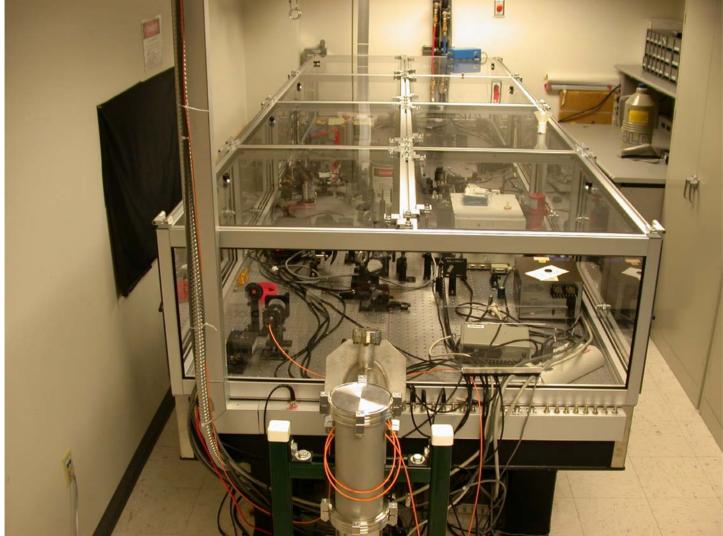

- Performs continuous diagnostics on CW or pulsed laser output
 - Lasing spectrum (λ^{peak} , FWHM)
 - Output power
 - Pulsewidth (via autocorrelation)
 - Beam Profile, Beam Quality, Pointing Stability (performed in user labs)
- Provide optical beam dump if beam is not required by users
- Diagnostics
 - Power: JLab-designed power meter, Molectron PM3 PM10K
 - Energy: Molectron J-25 pyroelectric detector
 - Pulsewidth of micropulse: Two-photon absorption or Type I autocorrelation
 - Pulseshape: Frequency Resolved Optical Gating
 - Beam Profile: Spiricon Pyrocam Type I & III, Coherent Modemaster
 - Spectrum: Acton SP300I (0.3 m fl)
 - EG&G Judson InSb and MCT
 - Sensors Unlimited InGaAs array, CalSensors PbSe array
 - Hamamatsu PMT

Thomas Jefferson National Accelerator Facility




Cellerson G

EXAMPLES OF DIAGNOSTIC OUTPUTS


Thomas Jefferson National Accelerator Facility

Jefferson Pab

OPTICS CONTROL ROOM

Thomas Jefferson National Accelerator Facility

CONCLUSIONS

- We've gained valuable experience on the optical cavity during commissioning.
- We are ready to commission the OTS
- We have a complete set of optical diagnostics for the IR Upgrade FEL
 - Macropulse energy
 - Average power
 - Spectrum
 - Pulsewidth and pulseshape
 - Beam profile
 - Beam quality

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

ellerson C