# Weak decay measurement of light hypernuclei at J-PARC

Shuhei Ajimura, Osaka University

- Weak decay of hypernuclei
- n/p ratio, asymmetry parameter
- Proposed experiment
- Yield estimation
- Summary

HYP2003 @ J-Lab 10/17/2003

# Weak decay of $\Lambda$ hypernuclei

- mesonic decay:  $\Lambda \to N\pi$
- nonmesonic decay:  $\Lambda N \rightarrow NN$

main decay mode medium/heavy hypernuclei
 large momentum transfer (~400MeV/c)
strangeness changing weak interaction
 YN weak → baryon-baryon weak interaction
observables:

 $\Gamma n/\Gamma p=\Gamma (\Lambda n \rightarrow nn)/\Gamma (\Lambda p \rightarrow np): n/p ratio$ α: asymmetry parameter n/p ratio

 $np(I=0,1), nn(I=1) \Rightarrow$  isospin structure

one pion exchange

- large  ${}^{3}S_{1} \rightarrow {}^{3}D_{1}$  amplitude(I=0)  $\Rightarrow$  n/p ratio ~ 0.1

- Meson exchange Ramos, Parreno, ...
- Quark model Oka, Inoue, Sakaki, ...
- $2\pi/\rho$ ,  $2\pi/\sigma$  mechanism– Itonaga, ...
- $\Rightarrow$  np-ratio: 0.4 ~ 0.7

n/p ratio – exp.  ${}^{5}_{\Lambda}$ He  $0.93 \pm 0.55$  (J. Szymanski et al., PRC 43(1991)849)  ${}^{12}_{\Lambda}$ C  $1.33 + 1.12 / _{-0.81}$  (J. Szymanski et al., PRC 43(1991)849)  $1.87 \pm 0.59 + 0.32 / _{-1.00}$  (H. Noumi et al., PRC52(1995)2936) (derived from single proton/neutron spectrum)

E462/E508 exp. – exclusive measurement of weak decay of  ${}^{5}_{\Lambda}$ He,  ${}^{12}_{\Lambda}$ C 0.4 ~ 0.6 (almost final)

- Now the theories become compatible with experimental results.

- We have to measure the nonmesonic weak decay with coincidence of final two nucleon

Asymmetry parameter

**E160** – asymmetric proton emission from polarized  ${}^{12}_{\Lambda}C/{}^{11}_{\Lambda}B$ 

<sup>12</sup><sub> $\Lambda$ </sub>C: A=-0.01±0.11, P<sub> $\Lambda$ </sub>=0.06~0.09 <sup>11</sup><sub> $\Lambda$ </sub>B: A=-0.19±0.10, P<sub> $\Lambda$ </sub>=0.16~0.21 PL B282(1992)293

• asymmetry parameter:  $-1.3 \pm 0.4$ 

 $E278 - {}^{5}_{\Lambda}He$ 

- asymmetry parameter:  $+0.24 \pm 0.22$  PRL 84(2000)4052
- polarization was determined experimentally

**E462/E508** -  ${}^{5}_{\Lambda}$ He,  ${}^{12}_{\Lambda}$ C/ ${}^{11}_{\Lambda}$ B

 ${}^{5}_{\Lambda}$ He: +0.07  $\pm$  0.08(stat.) (preliminary)

We confirm E278 result, although the asymmetries are derived from single proton spectra.

#### Theory-Meson-ex/DQ-ex

• -0.7 for both s-/p-shell hypernuclei

#### Asymmetry parameter

- Recent experimental results suggest small asymmetry parameter, which contradicts theoretical prediction.
- BUT the theory explains branching ratio fairly well.
- → Initial  ${}^{1}S_{0}$  contribution has to be important for asymmetry. (decay rates are mainly determined by  ${}^{3}S_{1}$  amplitudes)

$$\frac{{}^{1}\mathrm{S}_{0} / {}^{3}\mathrm{S}_{1}}{2\sqrt{3}\,\mathrm{Re}\left[\frac{-ae^{*} + b\left(c - \sqrt{2}d\right)^{*} / \sqrt{3} - f\left(\sqrt{2}c + d\right)^{*}\right]}{a^{2} + b^{2} + 3\left(c^{2} + d^{2} + e^{2} + f^{2}\right)}$$

We need ...

- to measure  ${}^{1}S_{0}$  amplitudes directly,
- to measure asymmetry parameter with back-to-back coincidence of final two nucleons.

### Nonmesonic decay of A=4, 5 hypernuclei

| hypernucleus                 | Λn→nn                      | $\Lambda p \rightarrow np$ |
|------------------------------|----------------------------|----------------------------|
| ${}^4\Lambda H$              | ${}^{1}S_{0}, {}^{3}S_{1}$ | ${}^{1}S_{0}$              |
| <sup>4</sup> <sub>A</sub> He | ${}^{1}S_{0}$              | ${}^{1}S_{0}, {}^{3}S_{1}$ |
| <sup>5</sup> <sub>A</sub> He | ${}^{1}S_{0}, {}^{3}S_{1}$ | ${}^{1}S_{0}, {}^{3}S_{1}$ |

Allowed initial states for A=4, 5 hypernuclei

•  $\Gamma p({}^{4}_{\Lambda}H)$ ,  $\Gamma n({}^{4}_{\Lambda}He)$ 

 $\Rightarrow$  we can measure  ${}^{1}S_{0}$  amplitudes directly.

- If  $\Delta I = 1/2$  rule holds,  $\Gamma n({}^{4}_{\Lambda}He)/\Gamma p({}^{4}_{\Lambda}H)=2$ .
- $\Rightarrow$  we can check the validity of the  $\Delta I=1/2$  rule in B-B weak interaction.

Existing experimental results

 $\Gamma n({}^{4}_{\Lambda}\text{He}) / \Gamma_{\Lambda} = 0.01^{+0.04} / _{-0.01} \text{ (KEK)}, 0.04 \pm 0.02 \text{(BNL)}$  NP A639(1998)261c  $\Gamma p({}^{4}_{\Lambda}\text{He}) / \Gamma_{\Lambda} = 0.16 \pm 0.02 \text{(KEK)}, 0.16 \pm 0.02 \text{(BNL)}$  NP A639(1998)251c

### Proposed experiment

| Subject                                            | Reaction                                      | Spectrometer          |  |
|----------------------------------------------------|-----------------------------------------------|-----------------------|--|
| ${}^{4}{}_{\Lambda}$ H: $\Lambda p \rightarrow np$ | ${}^{4}\text{He}(\text{K}^{-},\pi^{0})$       | $\pi^0$ -spectrometer |  |
|                                                    |                                               | $\Delta M$ hyp ~ 2MeV |  |
| <sup>4</sup> <sub>Λ</sub> He: Λn→nn                | $^{4}\text{He}(\text{K}^{-},\pi^{-})$         | mag. spectrometer     |  |
|                                                    |                                               | $\Delta M$ hyp ~ 2MeV |  |
| ${}^{5}_{\Lambda}$ He: asymmetry                   | $^{6}\text{Li}(\pi^{+},\text{K}^{+}\text{p})$ | mag. spectrometer     |  |
|                                                    |                                               | $\Delta M$ hyp ~ 2MeV |  |
|                                                    |                                               | large acceptrance     |  |

We need to develop:

liq. He target,  $\pi^0$ -spectrometer, decay counter system

BNL E907/E931: measure the <sup>4</sup>He(stopped K<sup>-</sup>,  $\pi$  <sup>0</sup>) reaction

#### $\pi^0$ spectrometer

$$E_{\pi^{0}} = M_{\pi^{0}} \sqrt{\frac{2}{(1 - \cos \eta)(1 - X^{2})}}$$
$$X = \frac{E_{1} - E_{2}}{E_{1} + E_{2}}$$
Energy resolution

Energy resolution

$$\Delta E_{\pi^0} = \sqrt{\left(\frac{\partial E_{\pi^0}}{\partial E_{\gamma}}\Delta E_{\gamma}\right)^2 + \left(\frac{\partial E_{\pi^0}}{\partial \eta}\Delta \eta\right)^2}$$



at X ~ 0

$$(\Delta E_{\pi^0})_{\Delta E_{\gamma}} \cong \frac{\sqrt{3}}{2} C^2, \quad \Delta E_{\gamma} = C \sqrt{E_{\gamma}} \qquad \text{CsI: } \mathbf{C} \sim 0.15 \implies \Delta \mathbf{E}_{\pi^0} \sim 0.0022 \text{ MeV}$$

$$(\Delta E_{\pi^0})_{\Delta \eta} \cong \frac{E^2 \beta}{2M} \Delta \eta \qquad 700 \text{MeV/c } \pi^0: <0.5 \text{ mrad for } \Delta \mathbf{E}_{\pi^0}(\text{rms}) < 1 \text{MeV}$$

$$\implies \Delta \mathbf{L}/\mathbf{L} < 0.16 \%$$

$$1 \text{ cm target thickness, if } \mathbf{L} = 200 \text{ cm}$$

 $\pi^0$  spectrometer – acceptance



## Yield estimation

|                                                | $^{4}\Lambda H$                                 | <sup>4</sup> <sub>A</sub> He     | <sup>5</sup> <sub>A</sub> He |
|------------------------------------------------|-------------------------------------------------|----------------------------------|------------------------------|
| beam intensity                                 | $5 \times 10^{6} \text{ K}^{-/3.4} \text{ sec}$ | $5 \times 10^{6}$ K <sup>-</sup> | $1 	imes 10^7$ $\pi^+$       |
| target thickness                               | $0.125 \text{ g/cm}^2$                          | 1.25                             | 4                            |
| cross section                                  | 0.2 mb/sr                                       | 0.5                              | 0.005                        |
| spectrometer acceptance                        | 0.10 sr                                         | 0.05                             | 0.03                         |
| spectrometer efficiency                        | 0.8                                             | 0.5                              | $0.5 \times 0.5$             |
| decay counter acceptance                       | 0.5                                             | 0.5                              | 0.5                          |
| efficiency for decay p                         | 0.8                                             | 0.8                              | 0.8                          |
| efficiency for decay n                         | 0.2                                             | 0.2                              | 0.2                          |
| branching ratio ( $\Lambda n \rightarrow nn$ ) | 0.1                                             | 0.01                             | -                            |
| branching ratio ( $\Lambda p \rightarrow np$ ) | 0.01                                            | 0.1                              | 0.2                          |
| nn events/200 shifts                           | 10000                                           | 5500                             | -                            |
| np events/200 shifts                           | 4000                                            | 220000                           | 4000                         |
| expected error level                           | 1.6%                                            | 1.5%                             | 4%                           |

#### Summary

- We propose to measure the nonmesonic weak decay of A=4,5 hypernuclei with back-to-back coincidence of final nucleons.
- Key observables are:

```
Decay rate of \Lambda n \rightarrow nn of {}^4_{\Lambda}He
```

```
Decay rate of \Lambda p \rightarrow np of {}^{4}_{\Lambda}H
```

Asymmetry parameter for  $\Lambda p \rightarrow np$  of  ${}^{5}_{\Lambda}He$ 

• Intense and pure secondary beam available at 50GeV-PS can give us a chance to derive conclusive experimental results for the nonmesonic weak decay of hypernuclei.

Conceptual design of decay counter system

•  $\pi/p$  separation  $\Delta E - E$   $\Delta E - TOF$ - thin plastic counter surrounding target( $\Delta E$ ) - outer plastic stack(E) - tracking by DC

Beam

charged veto

- neutron detection
- outer plastic stacks and charge veto

-  $\gamma$ /n separation and energy measurement can be done by TOF between beam hodoscope and outer plastic stacks

#### Nonmesonic decay

| initial       | final                       | amplitude | isospin | parity |
|---------------|-----------------------------|-----------|---------|--------|
| ${}^{1}S_{0}$ | ${}^{1}S_{0}$               | а         | 1       | no     |
|               | $^{3}P_{0}$                 | b         | 1       | yes    |
| ${}^{3}S_{1}$ | ${}^{1}S_{1}$               | С         | 0       | no     |
|               | <sup>3</sup> D <sub>1</sub> | d         | 0       | no     |
|               | <sup>1</sup> P <sub>1</sub> | е         | 0       | yes    |
|               | $^{3}P_{1}$                 | f         | 1       | yes    |

assuming initial S state

- n/p ratio: ratio of final isospin 1 to sum of 0 and 1

$$\frac{a_n^2 + b_n^2 + 3f_n^2}{a_p^2 + b_p^2 + 3(c_p^2 + d_p^2 + e_p^2 + f_p^2)}$$

- asymmetry parameter: interference between parity conserving and parity changing amplitudes

$$\frac{2\sqrt{3}\operatorname{Re}\left[-ae^{*}+b\left(c-\sqrt{2}d\right)^{*}/\sqrt{3}-f\left(\sqrt{2}c+d\right)^{*}\right]}{a^{2}+b^{2}+3\left(c^{2}+d^{2}+e^{2}+f^{2}\right)}$$
Nabetani et al.,  
PRC 60(1999)017001