Strangeness Production @ COSY

COSY-TOF

Proton Induced Strangeness Production on Protons and Nuclei Near Threshold

Markus Büscher Forschungszentrum Jülich Germany

The Accelerator: COSY-Jülich

COSY (<u>Co</u>oler <u>Sy</u>nchroton) at FZ-Jülich (Germany):

- (polarized) p & d beams
 - phase-space cooling

 electron & stochasting cooling
- p = 0.30 3.65 GeV/c
 - $pp \rightarrow pp~X~(m_X \leq 1.1~GeV/c^2)$
 - dd $\rightarrow~\alpha~X~$ (m_{X} $\leq 1.0~GeV/c^{2})$
 - $pp \rightarrow pK^{+}Y^{*}$ (m_{y*} $\leq 1.5 \ GeV/c^{2}$)
- internal & external beams

Production Thresholds: $p p \rightarrow p K^{+} \Lambda$ $T_{p} = 1.58 \text{ GeV}$ $p p \rightarrow p K^{+} \Sigma^{0}$ $T_{p}^{-} = 1.79 \text{ GeV}$ $p p \rightarrow p K^{0} \Sigma^{+}$ $T_{p}^{-} = 1.80 \text{ GeV}$ $p p \rightarrow p p K^{+} K^{-}$ $T_{p}^{-} = 2.50 \text{ GeV}$

Some interesting reactions:

- $pp \rightarrow pK^{\scriptscriptstyle +}Y$ (m_y $\leq 1.5~GeV/c^2$)
- $pp \rightarrow pp a_0/f_0(980)$

-
$$pA \rightarrow pK^{+}X$$
 (T_p = 1.0...2.3 GeV)

Several dedicated detection systems...

ANKE COSY-11

- circulating beam
- thin internal targets
- forward spectrometer (small acceptance)
- magnetic spectrometer

COSY-TOF

- extracted beam
- small target (vertex)
- nearly 4π coverage (no charge id)
- non-magnetic

MOMO (at BIG KARL)

Markus Büscher, HYP2003

- No magnetic field
- Detection of charged ejectiles
- Complete geometrical reconstruction of each event
 kinematical variables
- Start detector optimized for track/vertex reconstruction
- Additionally: TOF & ΔE
- Trigger: charge $2 \rightarrow 4$

Initial- (ISI) and Final State Interactions (FSI):

If (p,Y), (p,K), or (K,Y) travel along with each other, they interact and "distort" spectra (observables):

- → exploit this to study such interactions !!
- \rightarrow reactions close to threshold

<u>Example</u>: (pA)-FSI

 \rightarrow (p Λ) scattering length

Λ -Hyperon Production

Dalitz-plots:

- (analysis w/ theoretical model of A. Sibirtsev)
- at 2.85 GeV/c (see Fig.)

→ in addition to $p-\Lambda$ FSI, a strong contribution of the N*(1650) nucleon resonance is needed

 At higher energies, also the N*(1710) has to be included [FSI+N*(1650)] : N*(1710) ~ 1

W. Schröder, Ph.D. thesis Uni Erlangen, to be published

Λp Interaction

Λp Scattering Length

Σ -Hyperon Production

 $p p \rightarrow p K^0 \Sigma^+$ (COSY-TOF)

Dalitz-plots:

at 3.20 GeV/c (see Fig.) •

 \rightarrow rather smooth distribution

 "pentaguark" states (θ⁺)??? observed in (nK⁺) in photonuclear reactions

→ here: pp →
$$\Sigma^+ \Theta^+$$
 \downarrow
K⁰p

 \rightarrow nothing seen in pp $\rightarrow \Lambda$ (K⁺p) !!

`... we are optimistic to significantly contribute to the topic ..."

The $a_0/f_0(980)$ at ANKE/COSY

K⁺ Production from pA Reactions

- Inclusive cross sections for
 - D, C, Cu, Ag, Au Targets
 - $T = 1.0 \dots 2.3 \text{ GeV} (T_{NN} = 1.58 \text{ GeV})$
- Reaction mechanisms
 - Strong collectivity below threshold
 - Model calculations (CBUU transport, folding model...)
 - Correlation measurements

pD data:
 σ(pn → K⁺X) ≅ 4·σ(pp → K⁺X)
 taken from:
 K.Tsushima et al., PRC 59, 369 (1999)

Publication in preparation

Nuclear Medium Effects

- Cross-section ratios R(A/C) have very small systematic uncertainties
- V_{K+} is sensitive to peak position in R(A/C)
- $\begin{array}{ll} \bullet & p \textit{A reactions probe nuclear} \\ medium at \rho \leq \rho_0 \end{array} \end{array}$
- Best agreement with calculations for

 $V_{K^+}(\rho \le \rho_0) = +20 \text{ MeV}$

Expected accuracy <3 MeV

M.Nekipelov et al., PLB 540, 207 (2002)

Strangeness Production ...

- ... fundamental issues can be addressed ...
 - "Exotic" states
 - θ^+ in pp $\rightarrow pK^0\Sigma^+$???

- dd $\rightarrow \alpha$ ($\pi^0\eta$) and a_0 -f₀ mixing
- SU(3)_{flavor} symmetry breaking
 - NY interaction at low relative energies (compare with NN)
- In-medium masses

... needs to (and will) be vigorously investigated (at COSY)!

 $pp \to pK^{0}\Sigma^{+}, 3.30 \text{ GeV/c}$ $pA \to K^{+}X$ $V_{K} = +20 \text{ MeV}$ $Q_{0}^{0} Q_{0}^{0} Q_{$

I.d. of $pp \rightarrow dK^{+}K^{0}$ events @ ANKE

Forschungszentrum Jülich in der Kelmholtz-Gemeinschaft

First Results on the a_0^+

Λ vs. Σ^0 Production ...

Experimental challenges ...

NN Partial Cross Sections:

 $p p \rightarrow N Y K$ (mostly COSY data)

more specifically:

 $p p \rightarrow p \Lambda K^{+}$ $p p \rightarrow p \Sigma^{0} K^{+}$ $p p \rightarrow p \Sigma^{+} K^{0}$ $p p \rightarrow n \Sigma^{+} K^{+}$

 $(p p \rightarrow pp K^{+} K^{-})$