Kaon Electromagnetic Production in Hall B

Outline

- > The Strangeness Program
- > The CLAS Detector
- > Formalism and Models
- > Program Highlights
- > Summary and Outlook

Hall B Programs

The CLAS strangeness physics program is focussing on associated production of ground–state hyperons.

Photoproduction

- > Total & differential cross sections
- > Induced polarization
 - circular & linear polarization
- > Beam-recoil polarization
- > Polarized target measurements frozen-spin target

Electroproduction

- > Differential cross sections
- > Induced polarization
- > Beam-recoil polarization
- > Beam asymmetry
- > Polarized target measurements
- > Global multi-dataset analysis

D.S. Carman, Ohio University

CLAS Spectrometer

Characteristics: Hadron Coverage: $\theta:15\text{--}140^{\text{o}},\ \varphi:80\%\ 2\pi$ **Resolution :** $\frac{\Delta p/p \sim 1-2\%}{\Delta \theta, \Delta \phi \sim 2 mrad}$ Electron Mode: **Electrons**: θ : 15–50° $\mathcal{L} = 1 \times 10^{34} \ cm^{-2} sec^{-1}$ **Photon Mode:**

Bremsstrahlung tagger : $10^7 \gamma / s$

Kinematic Coverage

The measurement program is designed to study the <u>full</u> nucleon resonance region,

while spanning the <u>full</u> kaon angular range in θ^* / Φ for each of the different observables.

Publication Status

Electroproduction

- S.P. Barrow et al. (CLAS Collaboration), "Electroproduction of the Λ(1520) Hyperon", Phys. Rev. C 64, 044601 (2001).
- > D.S. Carman *et al.*, (CLAS Collaboration), "First Measurement of Transferred Polarization in the Exclusive $\vec{e}p \rightarrow e'K^+\vec{\Lambda}$ Reaction", Phys. Rev. Lett. 90, 131804 (2003).
- > R. Feuerbach *et al.*, (CLAS Collaboration), "Electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ at CLAS", in CLAS Working Group review.

Photoproduction

 J. McNabb et al., (CLAS Collaboration), "Hyperon Photoproduction in the Nucleon Resonance Region", Pre-print nucl-ex/0305028, submitted to Phys. Rev. Lett., (2003).

D.S. Carman, Ohio University

Reaction Mechanism

- Comprehensive description of reaction mechanism not yet available.
 - Progress hindered by lack of data and theoretical support.

(programs at SPring-8, SAPHIR, GRAAL, CLAS)

 Study contribution of s, t, and u channels to the reaction dynamics.

- Study structure of intermediate mesons and baryons.
 - Determine masses, widths, helicity amplitudes, partial decay widths.
 - $-\Lambda |\Sigma^0$ selection acts as isospin filter.
 - $-\Lambda |\Sigma^0$ production allows polarization measurements.

D.S. Carman, Ohio University

"Missing" Quark Model Baryons

□ The constituent quark model predicts more states than seen experimentally.

Perhaps these "missing" states decay into KY channels.

Complementary to other mechanisms.

Baryon	*** and **** Resonances	* and ** Resonances	
N*	$S_{11}(1535), S_{11}(1650),$	$S_{11}(2090),$	– Focus on W>1.6 GeV.
	$P_{11}(1440), P_{11}(1710), P_{13}(1720),$	$P_{11}(2100), P_{13}(1900),$	Fertile area for discovery
	$D_{13}(1520), D_{13}(1700), D_{15}(1675),$	$D_{13}(2080), D_{15}(2200),$	Territe uren for uiseboerg.
	$F_{15}(1680),$	$F_{15}(2000), F_{17}(1990)$	
	$G_{17}(2190), G_{19}(2250),$		
۸ *	$\frac{H_{19}(2220)}{S_{10}(1405)} = \frac{S_{10}(1650)}{S_{10}(1650)} = \frac{S_{10}(1800)}{S_{10}(1800)}$		– Supported by recent quark
Λ	$B_{01}(1405), S_{01}(1050), S_{01}(1800), B_{01}(1800), B_{01}(1800)$		model calculations.
	$D_{03}(1520), D_{03}(1690), D_{05}(1830), $	$D_{03}(2325).$	
	$F_{05}(1820), F_{05}(2110),$	$F_{07}(2020)$	Capstick and Roberts, PRD 58 (1998).
	$G_{07}(2100),$		
	$H_{09}(2350)$		
Σ^*	$S_{11}(1750),$	$S_{11}(1620), S_{11}(2000),$	 Supported by recent data.
	$P_{11}(1660), P_{11}(1880), P_{13}(1385),$	$P_{11}(1710), P_{11}(1880), P_{13}(1840),$	
	$D_{1}(1070)$ $D_{1}(1040)$ $D_{1}(1775)$	$P_{13}(2080),$	(SAPHIR, GRAAL, SPring–8, CLAS)
	$D_{13}(1070), D_{13}(1940), D_{15}(1775), $ $E_{-}(1015), E_{-}(2020)$	$D_{13}(1580),$ $F_{-}(2070)$	
	$1^{1}15(1910), 1^{1}17(2000)$	$G_{17}(2100),$	

D.S. Carman, Ohio University

Polarization Observables

 Most of our understanding about the reaction mechanism comes from unpolarized experiments.

> This gives access only to limited information.

Polarization provides information about the contributing amplitudes.

- Access underlying dynamics via both single and double polarization.
 - $\overrightarrow{\gamma^{(*)}} + p \rightarrow K^+ + Y$
 - $\gamma^{(a)} + p \rightarrow K^+ + \overrightarrow{Y}$
 - $\overrightarrow{\gamma}(*) + p \rightarrow K^+ + \overrightarrow{Y}$

Beam asymmetry

- Induced polarization
- **Transferred** polarization

D.S. Carman, Ohio University

Hadrodynamic Models

Isobar models based on effective Lagrangian.

(Mart, Bennhold, Janssen, Saghai, Williams)

Features primarily due to s-channel resonances.
 t-channel contains only K and K*.

Coupling strengths set by fits to existing data.

- Parameters set by coupled-channels study.
- "Loose" SU(3) constraints in effect.

Recent addition of u-channel Y* resonances.

- Gives more realistic hadronic form factor cut-off.
- Affects polarization at large angles.

> Effective at low to moderate energies.

D.S. Carman, Ohio University

Models based on parameterized t-channel exchange.

Regge trajectories (Guidal, Laget, Vanderhaeghen)

- **NO** s-channel resonances included (only Born terms).
- Very few adjustable parameters.
- Effective at moderate to higher energies.

D.S. Carman, Ohio University

Energy Distributions

 $\gamma + p
ightarrow K^+ + \Sigma^0$

Sample of ~750 CLAS points.

One peak at 1.9 GeV with an angle–dependent shape.

Guidal – 1999 Bennhold – 2002 Janssen – 2002

Existing models perform poorly

But, NOT yet fit to this CLAS data!!

R.A. Schumacher and J. McNabb

D.S. Carman, Ohio University

Induced Polarization

Five Structure Function Analysis

 $\sigma = \sigma_T + \epsilon_L \sigma_L + \epsilon \sigma_{TT} \cos 2\Phi + \sqrt{2\epsilon_L(1+\epsilon)} \ \sigma_{LT} \cos \Phi + h \sqrt{2\epsilon_L(1-\epsilon)} \ \sigma_{LT'} \sin \Phi$

Perform simultaneous fit to ALL existing CLAS e+p data sets for five structure functions.

CLAS data sets at: 2.6, 3.2, 4.0, 4.2, 4.4, 4.8, 5.7 GeV

- ***** Better accounts for correlated errors in the fits.
- * Allows for reduced statistical uncertainties.
- * Gets the most out of the CLAS data sets.

 Q^2 range: 0.3 to 6.0 GeV²

W range: 1.6 to 3.0 GeV

Fit Function: $f(\epsilon, h, W, Q^2, \cos \theta_K^*, \Phi)$

D.S. Carman, Ohio University

Beam Asymmetry

 $ec{e}+p
ightarrow e'+K^++\Lambda$

Measure polarized beam asymmetry to extract fifth structure function.

Summary/ Conclusions

- The Hall B strangeness physics program:
 - Designed to measure all combinations of beam, target, recoil polarization states.
 - Sensitive to high-mass baryons (>1.6 GeV) with large K-Y couplings.

Understand nucleon structure and excited nucleon states.

- Clear evidence of resonant structures in the energy and angle dependences of photo- and electroproduction data.
- Existing theoretical models do not describe the data well over the broad kinematic phase space measured.

Productive new round of fitting/modeling
 Improved PWA analysis now possible.

Wealth of data \implies Tight constraints

D.S. Carman, Ohio University

$$\frac{d^{5}\sigma}{d\Omega_{E'}d\Omega_{K}^{*}dE'} = \Gamma_{v}\frac{d^{2}\sigma_{v}}{d\Omega_{K}^{*}} \quad \text{(For unpolarized target)} \\
\frac{d^{2}\sigma_{v}}{d\Omega_{K}^{*}} = \sigma_{0}\left[1 + h A_{TL'} + \vec{S} \cdot \vec{P}^{0} + h (\vec{S} \cdot \vec{P}')\right]$$
Unpolarized Cross Section
$$\sigma_{0} = \mathcal{K}(R_{T}^{00} + \epsilon_{L}R_{L}^{00} + \epsilon R_{TT}^{00} \cos 2\Phi + \sqrt{2\epsilon_{L}(1+\epsilon)} R_{TL}^{00} \cos \Phi)$$

$$\int A_{TL'} = \frac{\mathcal{K}}{\sigma_{0}} \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL'}^{00} \sin \Phi \quad Polarized beam$$

$$\left(\begin{pmatrix} P_{x'}^{0} \\ P_{y'}^{0} \\ P_{y'}^{0} \end{pmatrix} = \frac{\mathcal{K}}{\sigma_{0}} \begin{pmatrix} \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL}^{00} \sin \Phi + \epsilon R_{TT}^{x'0} \sin 2\Phi \\ \sqrt{2\epsilon_{L}(1+\epsilon)} R_{TL}^{x'0} \sin \Phi + \epsilon R_{TT}^{x'0} \sin 2\Phi \end{pmatrix} \quad Induced polarization$$

$$\left(\begin{pmatrix} P_{x'}^{\prime} \\ P_{y'}^{\prime} \\ P_{y'}^{\prime} \end{pmatrix} = \frac{\mathcal{K}}{\sigma_{0}} \begin{pmatrix} \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL'}^{x'0} \cos \Phi + \sqrt{1-\epsilon^{2}} R_{TT'}^{x'0} \\ \sqrt{2\epsilon_{L}(1-\epsilon)} R_{TL'}^{x'0} \sin \Phi + \sqrt{1-\epsilon^{2}} R_{TT'}^{x'0} \end{pmatrix} \quad Transferred polarization$$

Polarization Extraction

$$\vec{P}_{\Lambda} = \vec{P}^{o} \pm P_{b}\vec{P}'$$

$$\vec{P}_{\Lambda} = P^{o} \pm P_{b}\vec{P}'$$

(x,y,z) system

(x',y',z') system

Note: $P'_{y,y'} = 0$, *but other components can be non-zero.*

Structure Functions Extraction

D.S. Carman, Ohio University

Structure Functions

 $\sigma_0 = \sigma_T + \epsilon_L \sigma_L + \epsilon \sigma_{TT} \cos 2\Phi + \sqrt{2\epsilon_L(1+\epsilon)} \, \sigma_{LT} \cos \Phi$

D.S. Carman, Ohio University

"Missing" N* Resonances

Normalization Check

 $\gamma + p
ightarrow \pi^+ + n$

CLAS data normalized to pion production.

(photoproduction)

A sampling of the comparison.

R.A. Schumacher and J. McNabb

D.S. Carman, Ohio University