# Strange nuclear structures with high density formed by single/double K<sup>-</sup> meson



HYP2003, '03.10.18 at Jlab, America

#### Introduction





![](_page_3_Figure_0.jpeg)

## J & T projections (VBP)

After obtaining  $\Phi^{\pm}$  by Tz-projected AMD cooling, it is projected onto the eigen state of the angular momentum J and the isospin T.

$$\begin{vmatrix} P_{MK}^{J} P_{TzTz'}^{T} \Phi^{\pm} \end{pmatrix} = \int d\Omega_{Ang} D_{MK}^{J*}(\Omega_{Ang}) \hat{R}_{Ang}(\Omega_{Ang}) \\ \times \int d\Omega_{iso} D_{TzTz'}^{T*}(\Omega_{iso}) \hat{R}_{iso}(\Omega_{iso}) | \Phi^{\pm} \rangle$$

$$J \text{ projection} \qquad \hat{R}_{Ang}(\Omega) = \exp\left[-i\alpha \hat{J}_{z}\right] \exp\left[-i\beta \hat{J}_{y}\right] \exp\left[-i\gamma \hat{J}_{z}\right] \\ \hat{R}_{iso}(\Omega) = \exp\left[-i\alpha \hat{T}_{z}\right] \exp\left[-i\beta \hat{T}_{y}\right] \exp\left[-i\gamma \hat{T}_{z}\right]$$

$$We \text{ calculate various expectation values}$$

with  $\left|P_{\scriptscriptstyle MK}^{\scriptscriptstyle J}P_{\scriptscriptstyle TzTz'}^{\scriptscriptstyle T}\,\Phi^{\pm}
ight
angle$  .

#### Formalism

- 1. Hamiltonian  $\hat{H} = \hat{T} + \hat{V}_{NN} + \hat{V}_{KN} + \hat{V}_{Coulomb} \hat{T}_{G}$
- 2. Variational parameters  $\{X_{\alpha}^{i}\} = \{C_{\alpha}^{i}, \mathbf{Z}_{\alpha}^{i}, \gamma_{\alpha}^{i}, C_{\alpha}^{K}, \mathbf{Z}_{\alpha}^{K}, \gamma_{\alpha}^{K}\}$  are determined by Frictional cooling eq. with constraint.
- 3. G-matrix method  $\Longrightarrow$  Effective interaction  $\hat{V}_{NN}$ ,  $\hat{V}_{KN}$ bare NN int = Tamagaki potential (OPEG) bare KN int = AY potential

given density and starting energy of  $K \rightarrow G-matrix$ 

Repeat until getting consistency

AMD calculation density and starting energy of

## Results —

J(J

 $\frac{1}{2}$ 

#### ppnK<sup>-</sup>

|          |                                    |                       | • •                |                         |                      |                                                                                        |
|----------|------------------------------------|-----------------------|--------------------|-------------------------|----------------------|----------------------------------------------------------------------------------------|
| Mo       | del space                          |                       | As                 | sumption of             | <u>G-matrix</u>      |                                                                                        |
|          | 2 Gaussian<br>5 Gaussian           | / nucleon<br>/ kaon   |                    | E(K)=112.8N             | /IeV, cen            | tral density=1.50fm <sup>-3</sup>                                                      |
| Rea      | <u>sults</u>                       |                       |                    |                         |                      |                                                                                        |
| ]        | Projecting on                      | to J=1/2 and          | d T=0.             | Parity is posi          | tive.                |                                                                                        |
|          |                                    | F(K)                  | Width              | ho (0)                  | Rrms                 | G-matrix consistency · OK !                                                            |
|          | JT projection<br>simple AMD<br>BHF | 110.3<br>105.2<br>108 | 21.2<br>23.7<br>20 | 2 <u>1.50</u><br>7 1.39 | 0.72<br>0.72<br>0.97 |                                                                                        |
| Qua      | antum numbe                        | <u>rs</u>             |                    | Particle nur            | nbers                |                                                                                        |
| . 1)     |                                    | After Be              | fore               | -                       |                      |                                                                                        |
| + 1)     | J2 (total sys.)                    | 0.75 1                | .36                | Proton                  | 1.51                 | $\operatorname{ppn} \mathbf{K}^{-} \cdot \operatorname{pnn} \overline{\mathbf{K}^{0}}$ |
| $1_{+1}$ | J2 (N sys.)                        | 4 <mark>7</mark> 8 1  | .22                | Neutron                 | 1.49                 |                                                                                        |
| 2 1)     | S2 (N JT proj                      | jection : O           | <b>K!</b>          | K-<br>K0bor             | 0.51                 | =1:1                                                                                   |
|          | L2 (kaon)                          | 03 0                  | .14                |                         | 0.49                 |                                                                                        |
|          | T2                                 | 0.00 0                | .02                |                         |                      |                                                                                        |
|          |                                    | 0.00 0                | 00                 |                         |                      |                                                                                        |

## Binding energy of Kbar and width

![](_page_7_Figure_1.jpeg)

results and the G-matrix used in the calculation

![](_page_8_Figure_0.jpeg)

#### Number of nucleons near K<sup>-</sup> meson

![](_page_9_Figure_1.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_0.jpeg)

## Summary & Future plan

- We have improved AMD so that we can treat  $K^{-}p/\overline{K}^{0}n$  mixing and perform J & T projections.
- We have calculated various kaonic nuclei ppnK<sup>-</sup> , pppK<sup>-</sup> , pppnK<sup>-</sup> , <sup>6</sup>BeK<sup>-</sup> , <sup>9</sup>BK<sup>-</sup> and <sup>11</sup>CK<sup>-</sup>. Our results are  $\downarrow$

|        | E(K)<br>[MeV] | width<br>[MeV] | ρ (0)<br>[fm^- 3] | Rrms<br>[fm] | β    | Y<br>[deg] |
|--------|---------------|----------------|-------------------|--------------|------|------------|
| ppnK-  | 110.3         | 21.2           | 1.50              | 0.72         | 0.22 | 9.2        |
| pppK-  | 96.7          | 12.5           | 1.56              | 0.81         | 0.70 | 11.8       |
| pppnK- | 105.0         | 25.9           | 1.29              | 0.97         | 0.54 | 3.8        |
| 6BeK-  | 104.2         | 33.3           | 0.91              | 1.17         | 0.44 | 0.3        |
| 9BK-   | 118.5         | 33.0           | 0.71              | 1.45         | 0.46 | 20.8       |
| 11CK-  | 117.0         | 37.0           | 0.82              | 1.49         | 0.36 | 46.4       |

*K*<sup>-</sup> *is very deeply bound and forms very highly dense state.* 

- Saturation of E(K) is related to the number of nucleons with which a K<sup>-</sup> can interact?
- Even if the KN interaction is very attractive, extremely proton-rich nuclei are not always deeply bound.
- Excited states ?
- **•** KK interaction ?

#### Introduction

<u>Remarks</u>

$$v_{\overline{K}N}^{I}(r) = v_{D}^{I} \exp\left[-(r/0.66 \text{ fm})^{2}\right],$$

$$v_{\overline{K}N,\pi\Sigma}^{I}(r) = v_{C_{1}}^{I} \exp\left[-(r/0.66 \text{ fm})^{2}\right],$$

$$v_{D}^{I=0} = -436 \text{ MeV}, \quad v_{C_{1}}^{I=0} = -412 \text{ MeV}, \quad v_{C_{2}}^{I=0} = \text{none},$$

$$v_{\overline{K}N,\pi\Lambda}^{I}(r) = v_{C_{2}}^{I} \exp\left[-(r/0.66 \text{ fm})^{2}\right]$$

$$v_{\overline{K}N,\pi\Lambda}^{I}(r) = v_{C_{2}}^{I} \exp\left[-(r/0.66 \text{ fm})^{2}\right]$$

Y. Akaishi and T. Yamazaki, PRC 65 (2002) 044005

- Not single channel, but coupled channel.
- Same property as KN interaction derived from Chiral theory.

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

E(K) = 117 MeV  $\Gamma$  = 37 MeV  $\rho_{MAX}$  = 0.82 fm<sup>-3</sup> R<sub>rms</sub> = 1.49 fm

LS force : off

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

size : 4fm x 4fm

#### Introduction

![](_page_15_Figure_2.jpeg)

#### Proton satellite in pppK<sup>-</sup>

![](_page_16_Figure_1.jpeg)

#### Introduction

#### According to our study of various kaonic nuclei ...

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_0.jpeg)

## Results // <sup>8</sup>Be and <sup>8</sup>BeK<sup>-</sup> //

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_0.jpeg)

#### Double kaonic nuclei

#### Motivation

- We have a simple question: How do kaonic nuclei behave, if extra-one K<sup>-</sup> is added?
- Multi K<sup>-</sup> system is related to K<sup>-</sup> condensation, strange quark matter, and so on. Double kaonic nuclei, which contain two K-'s, are the simplest case of Multi K<sup>-</sup> systems.

![](_page_21_Figure_4.jpeg)

 $V_{KK} = 0$  since we have no information in the present stage.

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Picture_0.jpeg)

Matter

Neutron

![](_page_24_Picture_1.jpeg)

LS force : on

![](_page_24_Picture_3.jpeg)

 $\left| {}_{\mathrm{K}}^{3}\mathrm{H} \right\rangle = P_{T_{z}=0} \left| \Phi_{N} \Phi_{K} \right\rangle$  $= P_{T_{Z}=0} \left| \left( \sum_{m=-2/2}^{+3/2} P_{T_{Z}^{N}=m} \right) | \Phi_{N} \rangle \otimes \left( P_{T_{Z}^{K}=+1/2} + P_{T_{Z}^{K}=-1/2} \right) | \Phi_{K} \rangle \right|$  $=P_{T_{Z}^{N}=+1/2}\left|\Phi_{N}\right\rangle\otimes P_{T_{Z}^{K}=-1/2}\left|\Phi_{K}\right\rangle+P_{T_{Z}^{N}=-1/2}\left|\Phi_{N}\right\rangle\otimes P_{T_{Z}^{K}=+1/2}\left|\Phi_{K}\right\rangle$  $\left| \begin{array}{c} pnn \overline{K}^{0} \\ pnn \overline{K}^{0} \\ P_{T_{Z}^{N} = -1/2} \right| \Phi_{N} \right\rangle$  $\left| ppnK^{-} \right\rangle$   $P_{T_{Z}^{N}=+1/2} \left| \Phi_{N} \right\rangle$  $P_{T_z=0} \left| \Phi_N \Phi_K \right\rangle$ Proton Neutron

holds good in AMD calculation of  ${}^{3}_{K}H(T=0)$ .

## Treatment of $K^{-}p/\overline{K}^{0}n$ mixing

Usual practice = Coupled channel ex) ppnK<sup>-</sup>  $|\Phi\rangle = \sum_{a} C_{a} |ppnK^{-}\rangle_{a} + \sum_{b} D_{b} |pnn\overline{K}^{0}\rangle_{b}$ Multi-Slater determinants But some problems ...

1. common  $\{\mathbf{Z}_i\}$  for all slater det.,  ${}_AC_Z + {}_AC_{Z-1}$  slater determinants !

2. different  $\{\mathbf{Z}_{i}^{(a)}\}$  for each slater det., how many slater determinants ?

- 3. How is the effective frictional cooling for multi-slater det. ?
- 4. Calculation of non-diagonal matrix elements is somewhat tedious.  $\langle ppnK^{-} | \hat{V} | pnn\overline{K}^{0} \rangle$

Single slater determinat with charge-mixed s.p. wave func.

In the single-particle state, p and n are mixed, and K- and KObar are mixed.

$$|N\rangle = a |p\rangle + b |n\rangle$$
$$|K\rangle = x |K^{-}\rangle + y |\overline{K}^{0}\rangle$$

 $|\Phi\rangle = |NNK\rangle$  contains  $ppnK^-$  and pnnK'

But total Tz is restored with the Tz-projection.

## Treatment of $K^{-}p/\overline{K}^{\circ}n$ mixing

ex) ppnK<sup>-</sup>  $\left|\Phi\right\rangle = C\left|ppnK^{-}\right\rangle + D\left|pnn\overline{K}^{0}\right\rangle$ Usual practice = Coupled channel But in AMD treatment non-diagonal matrix element can't be calculated. Calculation of  $\langle ppnK^{-} | \hat{V} | pnn\overline{K}^{0} \rangle$  needs the inverse matrix of the overlap matrix  $B_{ij} = \langle \varphi_{i} | \varphi_{j} \rangle$  $B = \begin{pmatrix} \alpha & \beta & 0 \\ 0 & 0 & \gamma \\ 0 & 0 & \delta \end{pmatrix} \stackrel{p}{n} \implies B^{-1} \text{ does not exist !}$ In the Slater determinant  $|\Phi\rangle = |NNNK\rangle$ ,  $ppnK^-$  and  $pnn\overline{K}^0$  are mixed.  $|N\rangle = a |p\rangle + b |n\rangle$  $|K\rangle = x |K^{-}\rangle + y |\overline{K}^{0}\rangle$ In the single-particle state, p and n are mixed, and K- and KObar are mixed.

But total Tz is restored with the Tz-projection.

#### Introduction

If KN interaction is very strongly attractive...

• We can obtain a highly dense state by implanting K- into normal nuclei.

low temperature, high density

high temperature, high density

- Change of nuclear structure
  - : well-developed clustering structure vanishes ??

• Extending the drip line of unstable nuclei ???

![](_page_30_Figure_0.jpeg)

#### Formalism

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_0.jpeg)

#### Introduction

#### Changing the matter density of 8Be

Y.Akaishi solved  $\alpha \alpha K^2$  system with ATMS method. NN interaction = Hasegawa-Nagata No.1 which has 1.6 GeV repulsive core. KN interaction = Y.A. & T.Y. force.

![](_page_33_Figure_3.jpeg)

Binding energy = 113 MeV  $\Gamma_{\Lambda+\pi}$  = 38 MeV Central density = 5  $\rho_0$ 

The distribution  $|u_{\alpha\alpha}(r)|^2$  of the  $\alpha \alpha$  relative motion in  $\alpha \alpha$  K system.

K<sup>-</sup> causes 8Be to be shrunk. 8Be implanted K<sup>-</sup> loses two  $\alpha$  structure.

#### Akaishi-Yamazaki KN interaction

![](_page_34_Figure_1.jpeg)

#### り方

|               | W.Weise                                                                                                          | Julichグループ(K. Holinde)                                                                                                                                                                                     | 赤石・山崎                                                                                                                                       |
|---------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 基礎理論          | Chiral SU(3) effective Lagrangian                                                                                | meson exchange                                                                                                                                                                                             |                                                                                                                                             |
| 目的            | <br>KN系全体を合わす                                                                                                    | NN,YN,KN,KN全てを合わす                                                                                                                                                                                          | KNのbound stateにのみ着目                                                                                                                         |
| Channel       | $pK^-, n\overline{K}^0, \Lambda \pi^0, \Sigma^0 \pi^0, \Sigma^+ \pi^-, \Sigma^- \pi^+$                           | (同左) + $N\overline{K}^*, \Delta\overline{K}, \Delta\overline{K}^*$                                                                                                                                         | $pK^-, n\overline{K}^0, \Lambda\pi^0, \Sigma^0\pi^0, \Sigma^+\pi^-, \Sigma^-\pi^+$                                                          |
| ポテンシャル<br>の導入 | いうresonance。カイラル摂動論で<br>処理しようとすると、ある種のダイ<br>ャグラムを<br>無限オーダーとらねばならない。                                             | 相互作用ラグラジアンW = - $\int d^3x L_{int}$ から<br>W: 2次 one boson exchange,<br>resonance diagram<br>W: 4次 box diagram のポテンシャル<br>KN相互作用からG-parity変換で決まるもの<br>はそれを用いる。その他はfree parameter。<br>vertexのform factorは仮定。 | とにかくポテンシャルの形は<br>Gauss型としてしまえ!<br>全チャネルで<br>$v_x^l = v_{cx}^l \exp[-(r/0.66)^2]$                                                            |
| 再現            | <ul> <li>Λ (1405)の位置と幅</li> <li>ΚΝ低エネルギー散乱の全断面積<br/>(K: 60~300 MeV/c in LAB)</li> <li>Branching ratio</li> </ul> | <ul> <li>▲ (1405)の位置と幅</li> <li>KN低エネルギー散乱の全断面積<br/>(K: 60~300 MeV/c in LAB)</li> </ul>                                                                                                                    | <ul> <li>▲ (1405)の位置と幅</li> <li>KN低エネルギー散乱の散乱長</li> <li>kaonic hydrogen atomのスペクト</li> <li>核物質中での散乱振幅の振る舞い<br/>はWeiseとconsistent</li> </ul> |
| 論文            | Nucl.Phys.A594(1995)325                                                                                          | Nucl.Phys.A513(1990)557                                                                                                                                                                                    | Phys.Rev.C65(2002)044005                                                                                                                    |

#### Julich KN Quasi-potential

![](_page_36_Figure_1.jpeg)

#### KN potential (G-matrix) for <sup>6</sup>BeK<sup>-</sup>

![](_page_37_Figure_1.jpeg)

## ppnK<sup>-</sup>

Density distributions of  $|P_{Tz}\Phi\rangle$  in ZX plane.

![](_page_38_Figure_2.jpeg)

model space2 Gaussian / nucleon5 Gaussian / kaon

 $\frac{\text{force}}{\text{E(K)=94.5MeV, central density=1.49fm}^{-3}}$ 

<u>Results</u>

Projecting onto J=3/2 and T=1. Parity is negative.

|               | B.F.  | width | dens0 | rmsR | beta | gamma |
|---------------|-------|-------|-------|------|------|-------|
| JT projection | 96.68 | 12.45 | 1.56  | 0.81 | 0.70 | 11.78 |

G-matrix consistency is a little violated.

| Quantum num                                                               | ibers                                                                                                                                                            | Particle nu                             | mbers                        |                                                                                                                                                                        |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| J2 (total sys.)<br>J2 (N sys.)<br>L2 (N sys.)<br>S2 (N sys.)<br>L2 (kaon) | After         Before           3.73         4.20           3.69         3.96           1.98         3.15           0.75         0.81           0.14         0.24 | Proton<br>Neutron<br>K-<br><u>K0bar</u> | 2.67<br>0.33<br>0.67<br>0.33 | Even if we start AMD<br>cooling from various<br>initial value $\gamma$ which is<br>concerned to the isospin,<br>most of all solutions are<br>converged to this result. |  |
| T2<br>                                                                    | 2.00 2.00<br>1.00 1.00                                                                                                                                           | JT projection                           | is correctl                  | y working.                                                                                                                                                             |  |

## pppK<sup>-</sup>

Density distributions of  $|P_{Tz}\Phi\rangle$  in ZX plane.

![](_page_40_Figure_2.jpeg)

force

model space2 Gaussian / nucleon5 Gaussian / kaon

E(K)=99.6MeV, central density=1.31fm<sup>-3</sup>

<u>Results</u>

Projecting onto J=1 and T=1/2. Parity is negative.

| ~             | B.E.   | width | dens0 | rmsR | beta | gamma |
|---------------|--------|-------|-------|------|------|-------|
| JT projection | 105.01 | 25.85 | 1.29  | 0.97 | 0.54 | 3.80  |
|               |        |       |       |      |      |       |

G-matrix consistency is a little violated.

| Quantum num                                                               | ibers                                                                                                                                                            | Particle numbers                                                                                          |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| J2 (total sys.)<br>J2 (N sys.)<br>L2 (N sys.)<br>S2 (N sys.)<br>L2 (kaon) | After         Before           1.97         5.49           2.01         5.31           2.04         3.26           2.02         2.05           0.05         0.18 | Proton         2.60           Neutron         1.40           K-         0.60           K0bar         0.40 |
| T2<br>                                                                    | 0.75 <b>0.79</b><br>0.50 0.50                                                                                                                                    | JT projection is correctly working                                                                        |

## pppnK<sup>-</sup>

#### Density distributions of $|P_{T_z}\Phi\rangle$ in ZX plane.

![](_page_42_Figure_2.jpeg)

 $\rho(\mathbf{0}) = 1.29 \text{ fm}^{-3} \cdots$  central density

### Results — <sup>6</sup>BeK<sup>-</sup> –

model space 2 Gaussian / nucleon 5 Gaussian / kaon

E(K)=106MeV, central density=0.96fm<sup>-3</sup>

<u>Results</u>

Projecting onto J=0 and T=1/2. Parity is negative.

force

|               | B.F.   | width | dens0 | rmsR | beta | gamma |
|---------------|--------|-------|-------|------|------|-------|
| JT projection | 104.24 | 33.40 | 0.91  | 1.17 | 0.44 | 0.30  |

G-matrix consistency is accomplished.

| uantum num                                                                | <u>ibers</u>                                    |                                                | Particle numb                           | ers                          |
|---------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------|
| J2 (total sys.)<br>J2 (N sys.)<br>L2 (N sys.)<br>S2 (N sys.)<br>L2 (kaon) | After<br>- 0.06<br>0.03<br>0.03<br>0.00<br>0.09 | Before<br>4.86<br>4.60<br>4.58<br>0.02<br>0.27 | Proton<br>Neutron<br>K-<br><u>K0bar</u> | 3.79<br>2.21<br>0.79<br>0.21 |
| T2<br><u>Tz</u>                                                           | 0.75<br>0.50                                    | 0.97                                           | JT projection is                        | correctly workin             |

### <sup>6</sup>BeK<sup>-</sup>

Density distributions of  $|P_{Tz}\Phi\rangle$  in ZX plane.

![](_page_44_Figure_2.jpeg)

 $\rho(\mathbf{0}) = 0.91 \text{fm}^{-3} \cdots$  central density

#### <sup>9</sup>BK<sup>-</sup>

model space2 Gaussian / nucleon5 Gaussian / kaon

force E(K)=106MeV, central density=0.96fm<sup>-3</sup> for <sup>6</sup>BeK<sup>-</sup>

#### <u>Results</u>

Projecting onto J=3/2 and T=0. Parity is negative.

|               | F(K) | width | dens0 | rmsR | beta | gamma |
|---------------|------|-------|-------|------|------|-------|
| JT projection | 99.6 | 35.5  | 0.67  | 1.46 | 0.46 | 16    |
|               |      |       |       |      |      |       |

G-matrix consistency is violated.

| Quantum numbers                                                           |                                                                                                                                                                  | Particle numbers                 |                              |    |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|----|
| J2 (total sys.)<br>J2 (N sys.)<br>L2 (N sys.)<br>S2 (N sys.)<br>L2 (kaon) | After         Before           3.68         9.74           3.71         9.55           2.77         8.75           0.76         0.78           0.08         0.18 | Proton<br>Neutron<br>K-<br>K0bar | 4.69<br>4.31<br>0.69<br>0.31 |    |
| T2<br>                                                                    | 0.00 0.24                                                                                                                                                        | JT projection is almost          | ost correctly working        | 5. |

#### KN interaction

Is  $\overline{KN}$  interaction very strongly attractive ?

![](_page_46_Figure_2.jpeg)

#### kaonic hydrogen atom

about atomic 1s state shifted by KN interaction

![](_page_47_Figure_2.jpeg)

2s state lowered by K<sup>-</sup>N interaction is very similar to the original atomic 1s state. If ignoring a node, this lowered 2s state seems to be the solution obtained by changing the boundary condition a little ---  $\phi = 0$  at r=0 fm  $\rightarrow \phi = 0$  at r=1 fm ---So lowered 2s state appears energetically near the original 1s state.

| lowered 2s | = 1s' (1 s もどき ! <u>)</u>                          |
|------------|----------------------------------------------------|
|            | Seeing with nuclear scale, it has a node. So it is |
|            | 2s state.                                          |
|            | Seeing with atomic scale, the shape of its wave    |
|            | function is almost that of original 1s state       |

![](_page_48_Figure_0.jpeg)

### <sup>9</sup>BK<sup>-</sup>(tentative)

#### Density distributions of $|P_{Tz}\Phi\rangle$ in ZX plane.

![](_page_49_Figure_2.jpeg)