E906 and Resonant Mode of Decay

w. D.E.Kahana and D.J.Millener

- In E906 at the BNL-AGS, strong evidence for the nuclide $^4_{\Lambda\Lambda}$ H was found.
- The most striking components of this data was the appearance of a narrow low-momentum π^- line at $k_{\pi} = 104 105$ MeV/c, ascribed to the decay into a resonant state in $^4_{\Lambda}$ He.
- The existence of such a state is shown to be plausible and its characteristics delineated.

(correlated pion pair Tu, Tu)

Best Evidence for $4_{\Lambda\Lambda}H$

- Structure at 104-105 MeV/c narrow, unreported.
- Structure at 114-116 broad, two components

Correlated

Fig. 8. A-A binding energy ΔB_{AA} versus discrete pion momenta q_{π^-} (solid lines), which are expected for the two-body π^- decays of the AA-hypernuclei produced after the compound state formation reaction ${}^9\text{Be}(K^-,K^+) \rightarrow \int_{AA}^8 \text{He}^{\circ}$, ${}^8_{A} \text{H}^{\circ}$ compand +N. The vertical dashed lines indicate the characteristic pion momenta known for the two-body π^- decays of light single-A hypernuclei, with the numbers being monochromatic q_{π^-} in MeV/c. In the figure are the included the continuum but very sharp pions from the three-body decays C°_{AA} He and 5_A He ($\Delta q_{\pi} \simeq 0.45$ MeV/c and 1.7 MeV/c, respectively).

 α -A potential on the basis of a nonrelativistic quark-cluster model. This would stimulate theoretical investigations about the deeper origin of the central repulsion.

3.1.2 Decay spectrum

The energy spectrum of π^* is shown in Fig. 12 for the Isle case together with the experimental data by Gajewski et al. (1969). Again a good agreement is obtained between the theoretical result and the data. In the Green's function calculation a smearing with $\Delta E=0.5$ MeV was done to compare the result with the spectrum data which was obtained by counting emulsion events with 0.5 MeV energy interval.

Fig. 12. The π energy spectrum of $\frac{1}{2}$ Mn. The dash-dotted and dotted curves are the $p_{3/2}$ and $p_{1/2}$ contributions, respectively.

AKAISHI
& YAMAZAK
Progress In
Particle & Nuclear
Phys

(1994)

Likely scenario, consistent with observed species:

Nuclear events
initiated
with appreciable Television with appreciable Television with the content of the conten

Other possible apecies:

burt

$^4_{\Lambda\Lambda}$ H Decay Modes

$$^{4}_{\Lambda\Lambda}H \rightarrow ^{4}_{\Lambda}He + \pi_{H}^{-} \quad (\sim 112 - 118 \; MeV/c) \; (1)$$
 $^{4}_{\Lambda}He \rightarrow ^{3}H + p + \pi_{L}^{-} \quad (\sim 85 - 95 \; MeV/c) \; (2)$

and also, a decay into a possible excited state of $^4_\Lambda \mathrm{He},$

CONCENTRACE

$$^{4}_{\Lambda\Lambda}H \rightarrow ^{4}_{\Lambda}He^{*} + \pi_{L}^{-} (\sim 104 - 105 \ MeV/c) (3)$$
 $^{4}_{\Lambda}He^{*} \rightarrow ^{3}_{\Lambda}H + p$ (4)
 $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi_{H}^{-} (114.3 \ MeV/c),$ (5)

where π_H^- and π_L^- refer to the high and low momentum members of a correlated pair seen in the experiment.

8.9	(0-2)
7.78	$p+d+\Lambda \ ^3_\Lambda \mathrm{H}+p$
2.39	$^3{ m He}+\Lambda$
1.15	1+
0.00	0+

 $^4_{\Lambda} \text{He Spectrum}$

Resonance Candidates and Weak Decay

$$\sqrt{\frac{\mu}{3+\mu}} (s^2p)[3]1/2 \times s_{\Lambda} - \sqrt{\frac{3}{3+\mu}} s^3 \times p_{\Lambda}$$
 (1)

$$(s^2p)[21]1/2 \times s_{\Lambda} \tag{2}$$

$$(s^2p)[21]3/2 \times s_{\Lambda} \tag{3}$$

Matrix elements for the production of single- Λ hypernuclear configurations in the π^- weak decay of ${}_{\Lambda\Lambda}^4 H$ are given in the first row in units of $s_{\pi^-}^2 \langle l_N | j_{l_N} (k_\pi r) | s_\Lambda \rangle^2 / 4\pi$ where $\mu/(3+\mu)=0.284$. The remaining rows specify the breakup of the single- Λ hypernuclear configurations under the assumptions described in the text. Combining production and decay in this simple approach shows that ${}_{\Lambda}^3 H + p$ is favored over $d + p + \Lambda$ by a factor of 11/3 to 4/3.

Final state	$^4_{\Lambda}{ m He}(1^+)$	Eq. (1)	Eq. (2)	Eq. (3)
Production	1	$\mu/(3+\mu)$	1	4
$^4_{\Lambda}{ m He}(1^+)$	1			
$^3{ m He+}\Lambda$		1		
$^3_{\Lambda} ext{H}+p$		(台	1/9	8/9
$d+p+\Lambda$		(%1	8/9	1/9

Average (cluster) ³_{\Lambda}H-Proton Potential

$$V^{Surf}(r) = -V_0 \left[\frac{4e^{(r-R)/a}}{(1+e^{(r-R)/a})^2} \right], \qquad (1)$$

with R the radius and a the diffusivity. A Coulomb potential is included, taken as that of a uniform charge distribution with radius parameter $R_C = R$.

Only the strength of $V^{Surf}(r)$ is varied, to reproduce the correct ground state separation energy 7.75 MeV, yielding a depth:

$$V_0 = 28.09 MeV,$$
 (2)

with radius parameter R=2.07 fm, and diffusivity a=0.5 fm.

In this completely specified well, a p-wave resonance appears at;

$$\epsilon = [1.19 - (1/2)1.00] MeV.$$
 (3)

REPRODUCE (NEAR DECAY) RESURTS OF KUNAGAI-FUSE & OKARE

TO THE (1) & TO 3H+10: 0.6817, 40.

ESSENTIALLY SE- JA (RET) YA Dominant piece, no nucleon SEI4

Sufficient 34 produced for scenario to work

STATE IN QU DOBSNIE HER MUCH WITH (2)

- (1) OFF BHADNAL MATIN ELEMENTS ~ Spen-spin of AN

 ~ Singlet-triplet

 (both attractive)
- (2) (5° p)[3] purely sportous: no NN overlap with (5°p)[21] by transl. invariant force

Decay Momentum

With the resonance energy calculated the $\Lambda\Lambda$ pairing energy $\Delta B_{\Lambda\Lambda}$ can be estimated from the position of the narrow π^- peak ascribed to the weak decay from $_{\Lambda\Lambda}^4\mathrm{H}$ to $_{\Lambda}^4He^*$. The π^- momentum k^* is given by

$$\epsilon_{\pi} + k^{*2}/2M({}^{4}_{\Lambda}He^{*}) = M({}^{4}_{\Lambda\Lambda}H) - M({}^{4}_{\Lambda}He^{*}).$$
 (1)

To a good approximation here,

$$k_{\pi}^{*} = (107.466 - 1.6391\Delta) \ MeV/c,$$
 (2)

where
$$\Delta = B^* + \epsilon_R$$
 and

$$B^* = 2\bar{B}_{\Lambda}(^3_{\Lambda}H) + \Delta B_{\Lambda\Lambda}$$

]- & + AB

is the full binding energy of the Λ pair in $_{\Lambda\Lambda}^{4}H$.

$\Delta B_{\Lambda\Lambda}$ -Pairing Energy

Taking

$$\epsilon_R = 1.18 MeV, \tag{1}$$

$$\Delta B_{\Lambda\Lambda} = 0.34 MeV, \tag{2}$$

puts the centroid of the decay momentum at

$$k^* = 104.5 MeV/c. \tag{3}$$

Alternatively, $\epsilon_R = 0.97$ MeV and the same decay momentum results in $\Delta B_{\Lambda\Lambda} = 0.55$ MeV.

Assuming 300 KeV uncertainty in k^* produces range:

$$0.17 MeV < \Delta B_{\Lambda\Lambda} < 0.55 MeV. \tag{4}$$

Interestingly, the two body decay of $_{\Lambda\Lambda}^{4}H$ for $\Delta B_{\Lambda\Lambda}=0.34$ now appears at

$$k_{\pi} = 116.5 MeV/c, \tag{5}$$

Easily distinguishable in a future (better resolution) experiment.

Comments

- (1). We see that the existence of states above threshold in ${}^3_{\Lambda}H$ + proton system can straightforwardly describe the narrow, low momentum, π^- feature at 104 105 MeV/c observed in the BNL experiment E906.
- (2). The inferred energy of the resonance and energy range possible for $\Delta B_{\Lambda\Lambda}$, the latter likely somewhat less than 0.5 MeV, are not unreasonable. Takahashi et al. found $\Delta B_{\Lambda\Lambda} = 1.0 \pm 0.38$ MeV for $_{\Lambda\Lambda}^6$ He. One certainly expects a smaller value for the more extended mass 4 system, but the suggested values and their likely errors allow for consistency.
- (3). For the meantime, it is also of importance to perform many-body calculations with $\Sigma \Lambda$ coupling, and with forces constrained by as much data as is available, including E906. The latter experiment has pointed to the existence of two interesting nuclides, both mass 4 objects, one a very light S = -2 hypernucleus, the other an unusual, if not completely unexpected, resonance in an S = -1 daughter nucleus.
- (4). B(S = -2) < 4.5 MeV, $B(H^{0}) \le 1.5 \text{ MeV}$. No bound H^{0} ?