Photoproduction of $K^0 \Sigma^+$ with CLAS

Franz Klein The Catholic University of America

for the CLAS Collaboration

Photoproduction of associated strangeness :

Channels:

significant data exist: $\gamma p \rightarrow K^+ \Lambda$ $\gamma p \rightarrow K^+ \Sigma^0$

more data required to test theoretical predictions: $\gamma p \rightarrow K^0 \Sigma^+$ (this analysis) $\gamma n \rightarrow K^+ \Sigma^-$ Photoproduction of associated strangeness :

Channels:

significant data exist: $\gamma p \rightarrow K^+ \Lambda$ $\gamma p \rightarrow K^+ \Sigma^0$

more data required to test theoretical predictions: $\gamma p \rightarrow K^0 \Sigma^+$ (this analysis) $\gamma n \rightarrow K^+ \Sigma^-$

 \rightarrow couplings in SU(3)

$$G_{K^+\Sigma^0 p} = -G_{K^0\Sigma^0 n} = \frac{1}{\sqrt{2}}G_{K^0\Sigma^+ p} = \frac{1}{\sqrt{2}}G_{K^+\Sigma^- n}$$

$$G_{K^+\Sigma^0\Delta^0} = -\sqrt{2}G_{K^0\Sigma^+\Delta^+} = G_{K^0\Sigma^0\Delta^0} = \sqrt{2}G_{K^0\Sigma^-\Delta^0}$$

$$|K^0 > = 1/\sqrt{2} \{ |K^0_L > + |K^0_S > \}$$

 $K^0_{S} \rightarrow \pi^+ \pi^-$ (68.6 % branching ratio) $\rightarrow \pi^0 \pi^0$ (31.4 % branching ratio)

 $\Sigma^+ \rightarrow p\pi^0$ (51.6 % branching ratio)

Threshold energy 1.047 GeV

 $\rightarrow n\pi^+$ (48.3 % branching ratio)

Experimental Data

Run period g1c: October-November, 1999 2.445 GeV beam energy data set 10⁹ triggers Identified events:

4900 events for $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-)(p \pi^0)$ 2700 events for $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-)(n \pi^+)$

3.115 GeV beam energy data set 2.6x10⁹ triggers Identified events:

6000 events for $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-)(p\pi^0)$ 3900 events for $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-)(n\pi^+)$

Events from previous experiments:

ABBHHM (1969)18 eventsSAPHIR(1999)405 events

Jefferson Lab Newport News, VA

CLAS (CEBAF Large Acceptance Spectrometer)

Photon tagger

т 9

Photon Flux (flux per tagger E-counter)

Filtered $p\pi^+\pi^-\pi^0$ events

Filtered $n\pi^+\pi^+\pi^-$ events

Charged particle identification

Identification of π^0 or n by missing mass

Identification of K⁰ by invariant mass

Selected K⁰ events

Event selection on Σ^+ mass region

Selected Σ^+ events

Sideband K⁰ events

Event selection on Σ^+ mass region

Sideband Σ^+ events

Sideband subtraction

Final event sample

Cross sections

Identification of π^0 by missing mass

$$\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-) (p \pi^0)$$

Identification of K⁰ by invariant mass

$$\gamma p \longrightarrow K^0 \Sigma^+ \longrightarrow (\pi^+ \pi^-)(p \pi^0)$$

 $M(\pi^{+}\pi^{-})$

[GeV]

 $M(\pi^{+}\pi^{-})$

[GeV]

Identification of Σ^+ by missing mass (for $\Sigma^+ \rightarrow p\pi^0$)

$$\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-) (p \pi^0)$$

Identification of Σ^+ by missing mass (for $\Sigma^+ \rightarrow n\pi^+$)

$$\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-) (n \pi^+)$$

Desired process:

 $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-)(p \pi^0)$

Background processes which can pass our event selection criteria and contaminate the data:

$$\gamma p \rightarrow \pi^{+}\pi^{-}p\pi^{0}$$
 (phase space)
 $\gamma p \rightarrow p\omega \rightarrow \pi^{+}\pi^{-}p\pi^{0}$
 $\gamma p \rightarrow \Delta^{+}\rho^{0} \rightarrow \pi^{+}\pi^{-}p\pi^{0}$

These backgrounds are almost completely eliminated from our final event sample by our event selection criteria.

 $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-)(n\pi^+)$

Simulated processes

 $MM(\pi^+\pi^-)$

[GeV]

Experimental data

Systematic Errors

Non-contiguous regions of selected and sideband events

Photon

1.15-1.35

1.35-1.55

1.55-1.75

1.75-1.95

1.95-2.15

2.15-2.35

Sideband subtraction versus Gaussian fit

Extrapolation for missing angular regions

0.1

Integrated Cross Sections for $\gamma p \rightarrow K^0 \Sigma^+ \rightarrow (\pi^+ \pi^-)(p \pi^0)$ for the three data sets

Total cross section comparison with ABBHHM and SAPHIR results

Differential cross section comparison with SAPHIR results

Comparison with Coupled Channel model by Penner & Mosel

Phys. Rev. 66, 055212 (2002)

Phys. Rev. 66, 055212 (2002)

Comparison with Coupled Channel model by Penner & Mosel

(diff. Xsection)

Comparison with KAON-MAID predictions

Differential cross sections compared with KAON-MAID predictions

Partial wave decompositions for differential cross sections (KAON-MAID)

Conclusions

- our results for $\gamma p \rightarrow K^0 \Sigma^+$ in the range $1.15 \le E_{\gamma} \le 2.35 \text{ GeV}$ greatly expand upon existing data.
- at E_{γ} <1.55 GeV where previous data existed, our data are similar in shape for total cross section, but lower in magnitude than previous data and the KAON-MAID isobar model.
- for $E_{\gamma} > 1.55$ GeV our data differ from KAON-MAID predictions. Our data suggest decreasing the t- and u-channel Born terms.
- future experimental data will refine these results:
- recoil asymmetry (CLAS-g1c and CLAS-g8b)
- photon beam asymmetry (CLAS-g8b)
- target asymmetry (E02-112)
- beam-recoil and target-recoil polarization (E02-112)