Strangeness in Heavy Ion Collisions

- The question(s)?
- Strangeness at low energies (SIS 1AGeV)
- Strangeness at very high energies (SPS/RHIC)
- Strangeness at intermediate energies (AGS/SPS)
- Conclusions

Why Heavy Ions

Hyperons 2003, Jefferson Lab, Oct 2003

What are the questions?

In medium effects? (Neutron Stars)
Symmetry breaking patterns
Equation of state (Neutron Stars)
Equilibrium, reaction dynamics
.....

SIS (
$$E_{cm} < 1AGeV$$
)

SPS/RHIC (E_{cm}>20 AgeV)

- •Quark Gluon Plasma
- •In medium effects ???
- •Reaction dynamics,, "rare" probe

•....

Is it really all that different?

In the statistical model, we simply have different Temperature and chemical potential

Explicit SU(3) breaking by nuclear matter

Kaplan & Nelson: chiral SU(3)

$$\delta L = c_1 (N_{\gamma_{\mu}} N) (K \partial_{\mu} K) + c_2 (N N) (K K)$$

First term: $c_1(N_{Y_{\mu}}N)(K \partial_{\mu}K)$ (Weinberg Tomozawa) vector interaction repulsive for kaons and attractive for anti-kaons

Reason: Nuclear matter has no strange quarks breaks SU(3) symmetry explicitly

> NO splitting of the masses in matter with equal number of up, down and strange quarks

Pattern of chiral SU(3) symmetry breaking

Hyperons 2003, Jefferson Lab, Oct 2003

The difference between Kaons and Anti-kaons

•K-Nucleon NON-RESONANT

- •mean field (impulse approximation)
- •K+A consistent with K+N

(D.Ernst et al., Phys.Rev.C59,2627,(1999)

• expect repulsive mean-field

$$U_{opt} \approx 25 \frac{\rho}{\rho_0} MeV$$

•Anti-K-Nucleon RESONANT

•impulse approximation "fails"

- •Anti-K+A different from Anti-K+N
 - Anti-K+N repulsive
 - Kaonic atoms attractive
- •Lambda(1405)

Flow as a probe of the mean field

Hyperons 2003, Jefferson Lab, Oct 2003

Kaon Flow and "Squeeze out"

Anti-Kaons

An interesting but complicated Story

Attractive Anti-Kaon potential may result in (Anti)Kaon-condensation in neutron stars (Nelson, Kaplan; Brown, Prakash et al.)

However:

Neutron Stars and Kaonic atoms probe optical potential at T=0, p=0

Hyperons 2003, Jefferson Lab, Oct 2003

Kaonic Atoms Gal et al.

Kaonic atoms and Anti-Kaon Nucleon Scattering

Coupled channels, Pauli Blocking etc.

Presence of Lambda(1405) leads to repulsion in scattering amplitude

Analogy: p+n scatting in the deuteron channel

Hypothesis: If (1405) is weakly bound Anti-K – nucleon state, then it should dissolve in matter (Pauli blocking) and underlying attractive interaction appears (V.K. 1994)

Coupled channels, Pauli Blocking etc.

Lambda(1405): Coupled channels! Many refinements:

- chiral dynamics (Waas et al.)
- Self consistent (Lutz et al.; Oset et al.)
- many more resonances (Lutz et al.)
- Juelich potential (Tolos et al.)
- •
- •
- •

Momentum dependence

Cross Sections

In medium shifts/modifications of resonances induce changes in cross sections !

Hyperons 2003, Jefferson Lab, Oct 2003

A mean field description for the interactions of Anti-Kaons may be too simplistic

Heavy Ion reactions

KAOS Collaboration

Theoretical interpretations

The "old story": Attractive Anti-kaon potential increases yield

Cassing et al: 200-300% effect similar to Ko et al.

However: Does not work in all transport models

Schaffner et. al.: 50 % effect similar to Aichelin et al.

J. Aichelin: resolution under way

So what is going on?

Apparently none of the in medium effects makes much of a difference!

Equilibrium?????

Hyperons 2003, Jefferson Lab, Oct 2003

Equilibrium?

Hyperons 2003, Jefferson Lab, Oct 2003

A simple picture

(H. Oeschler, Strangeness 2000)

1)Strangeness conservation: $N(Y) = N(K^{+})$

2)Fast reaction K^-+N + Y: N(K^-) determined by N(Y)

 $3)N(Y) >> N(K^{-}):$

An amusing consequence

Anti- Kaon yield is determined by in medium effects on KAONS

Hartnack et al, PRL in print

Hyperons 2003, Jefferson Lab, Oct 2003

Needed: more simple systems!

Anti-Kaon in medium is an interesting story

- In medium effects are there (Kaonic atoms)
- Relative "simple" many body problem
- coupled channels
- Nature of resonances (quark or bound state)
- •
- C

Heavy ions probably not the right place to make progress!

- K⁻+N: resonance vs. background
- K⁻+A: should reveal already many of the interesting effects

Example: stopped kaons

(Ohnishi et al, 1997)

Medium changes branching ratio of Hyperon (Sigma) decay

Equilibrium (Anti Kaons)

In medium spectral functions affect ratios

But is that what we measure?

Un-mixing of modes during expansion!

Strangeness and the QGP

- More strange quanta in a Quark Gluon Plasma (QGP) than in a hadron gas (HG)
- Equilibration time shorter in QGP than in hadron gas
 - gluon fussion
 - lower threshold

Strangeness enhancement as signal for QGP (in particular strange ANTI-baryons)

Some definitions

- "strangeness" = strange + anti-strange
- "strangness suppression factor"

$$N_{K} = \gamma_{s} \int d^{3} p \exp(-\beta (E_{k} + \mu_{s}))$$
$$N_{A} = \gamma_{s} \int d^{3} p \exp(-\beta (E_{A} - \mu_{s} - \mu_{B}))$$

 $_{s} > 1$ Strangeness enhancement

• "Wroblewski"-factor = (strange quarks)/(light quarks)

Strangeness enhancement?

NA57

Statistical approach

One simple explanation

Canonical "suppression" (Redlich et al)

Explicit Strangeness conservation relevant for small systems Redlich et al.

Strangeness equilibrium at SPS?

Hyperons 2003, Jefferson Lab, Oct 2003

1000

 Ω^{-}

A simple observation

(Leupold & Greiner)

Strange Anti-baryon production is FAST

Key channel: Multi-particle collisions

annihilation of anti-omega should have large cross section

matrix element $M(\overline{\Omega} + N \rightarrow 3 K^{-} + x \pi)$ is large

inverse reaction should be fast as well due to detailed balance (phase-space just given by energy-conservation)

Leupold + Greiner estimate: = 1-2 fm

Model re-fit with all data

T = 176 MeV, J, = 41 MeV

10 4

NOTE: _=1 corresponds to a hadron gas in equilibrium

If QGP then >1

Hyperons 2003, Jefferson Lab, Oct 2003

The end of a nice idea?

Hyperons 2003, Jefferson Lab, Oct 2003

Furthermore...

Hyperons 2003, Jefferson Lab, Oct 2003

Not quite yet

NA49 has measured the excitation function for kaon production form (20) 30 -158 AGEV

Energy Dependence : Total K/ π Ratios

38 SQM03 Atlantic Beach

V. Friese, March 2003

Thermal model

(Becattini et al)

Thermal model cannot describe data! Here jump in s is needed

Isospin effect? (A. Rybicki)

Other aspects

•Strange particles should have different cross sections in a pion gas

• characterize the expansion dynamics

•Strange particles subject to additional conservation law

• check on equilibrium

•Heavy ions are nice resonance factories -> Pentaquark??

Summary

•Equilibrium seems to dominate "simple" Heavy Ion observables!

•Low energies:

- •Kaon dynamics a perfect playground to study the symmetry breaking patterns in QCD
- Anti-Kaon in matter: In medium modifications should be there!But have we seen them in HI data?
- •Kaons in HI are "understood" and consistent with simpler systems
- •Kaons support notion of "soft equation of state"

•High energies:

- •No obvious strangeness enhancement
- •Rather interesting structure in excitation function of K/
- •Strangeness serves as tool to further characterize events

Outlook

- Anti-Kaon story needs to be fully settled
 - Transport
 - Measure simpler systems K⁻+N, K⁻+A
- Chance to pin down equilibrium question!
 - Kaon pairs
 - Omega pairs (up to SPS energies)
- The Phi!
- The "bump"