Strange Baryon Production at RHIC

Hui Long Department of Physics University of California, Los Angeles

- 1. Introduction
- 2. Strangeness measurement and results
 - results of bulk properties(yield, freeze-out T, event anisotropy)
 - > results from intermediate P_T (<10 GeV/c) on Nuclear modification factor of Λ and Ks.
- 3. Summary

RHIG

100 GeV/nucleon (p, d,...Au)

PHOBOS

PHENIX

BRAHMS

Introduction: Physics Goal of RHIC

Identify and study the properties of the matter with partonic degree of freedom:

- nuclear effects in the intermediate p_T region initial conditions;
 parton energy loss due to interaction of dense matter.
- bulk properties collision dynamics; collective motion with the partonic degree of freedom; early thermalization (c-quark).

Strange particles can be good probes to both !!!

Strange Baryon Measurement at RHIC (130 GeV)

Strange Baryon Yield at Mid-rapidity (130 GeV)

Nearly linear dependence on number of charged particles

Ratio of Particle Yield and Statistic Model: T, μ_b γ_s

(integrated yield dominated by low pt particles)

One of the bulk properties: $T_{ch} \sim 176 \text{ MeV}$

(Chemical freeze-out: particle's yield remain unchanged since)

Strange Baryon and Hydro-dynamic Fit (130 GeV)

$$\frac{dn}{m_T dm_T} \propto \int_0^R r dr m_T K_1 \left(\frac{m_T \cosh \rho}{T}\right) I_0 \left(\frac{p_T \sinh \rho}{T}\right)$$

where
$$\rho = \tanh^{-1} \beta_T$$

E.Schnedermann et al, PRC48 (1993) 2462

Hydro-dynamic fit:

T, β (Thermal + Transverse flow)

 Ξ s behave differently !! Higher T_{fo} -- >Freeze-out earlier

 1σ , 2σ , 3σ contours

Transverse velocity $<\beta_1>$ (c)

Thermal freeze-out: particle pT distribution stable since

 $T_{fo} \sim T_{ch} \longrightarrow$ transverse flow at/before chemical freeze-out, maybe at partonic stage?

Event Anisotropy– What's Elliptic Flow?

coordinate space

Momentum space

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{r})) \right)$$

$$v_2 = \langle \cos 2(\varphi - \Psi_r) \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Effected by pressure gradient, surface emission pattern, final rescattering.

Features of Elliptic Flow at RHIC

Low pt: hydro-like collective behavior

High pt: lower than hydro-limit and the trend consistent with expectation from jet-quenching due to parton energy loss.

Strange Hadron (Ks and Λ) V_2 (200 GeV)

Hydro behavior at pt<2 GeV

$$, V_2(\Lambda) < V_2(K)$$

When pt> 2.5GeV, $V_2(\Lambda) > V_2(K)$!!!

- -- Energy Loss?
- -- Coalescence?

Partonic dof relevant?

Strange Particle v2 and Coalescence

V2 ~ n

 $-> \Xi$, Ω v2 = Λ v2

Partonic collectivity at RHIC?

Z Lin, PRL, 89,202302(02)

- S. Voloshin, nu-ex/0210014
- R. Fries et al. nucl-th/0301087
- D. Molnar et al. nucl-th/0302014

Strange Baryon in Intermediate P_T: Nuclear Modification

N_{part}: Number of participants number of incoming nucleons (participants) in the overlap region

N_{bin}: Number of binary collisions

number of equivalent inelastic nucleon-nucleon collisions

Nuclear Modification N-N cross section Factor: 1.2 R = 11.0 8.0 "hard" If no "effects": R < 10.6 R < 1 in regime of soft physics 0.4 R = 1 at high-p, where hard 0.2 scattering dominates 0.00 Tranverse Momentum (GeV/c)

Suppression of High p_T Charged Hadrons

Similar suppression pattern for π^0 and for 130 GeV Au+Au data and also observed by PHENIX

R_{cp} of Strange Particles

Different pt dependences between $R_{cp}(\Lambda)$ and $R_{cp}(K)$

At pt~5 GeV/c, all the Rcp approach each other.

0-2 GeV, Flow effects?

2-4 GeV, Coalescence?

>5GeV, Fragmentation?

Summary (I)

bulk properties

- Yield and Freeze-out T
 - -almost linear increase with charged hadrons;
 - earlier freeze-out and high freeze-out T of multistrange baryon Ξ → partonic radial flow ?
- > Event anisotropy
 - hydro behavior of v2 at pt< 2GeV/c;
- heavier particle has larger saturated v2 at pt>2
 Gev/c; ?← Coalescence model →? Partonic Collectivity
 ?

Summary (II)

Nuclear Effects

- -Suppression of charged hadron at pt<12 GeV/c;
- -Rcp dependent on particle type at pt< 5 GeV/c;
 - <- flow (0- 2 GeV/c) ?
 - <- Coalescence (2- 4 GeV/c) ? (partonic matter ?)</p>
 - <- fragmentation (> 5 GeV/c) ?

Multi-strange v2 and Rcp measurement in AA and dA coming soon !!!