Proton asymmetry from non-mesonic weak decay in light hypernuclei

Outline

- Motivation
- Analysis results s-shell(5 He) p-shell(12 C , 11 B)
 - Summary

Tomofumi Maruta Department of Physics Univ. of Tokyo

17th/Oct/2003

KEK-PS E462/E508 Collaboration

Motivation

Present status

The aim of E462/E508 experiment

- Precise measurement of Asymmetry parameter
 - with high statistics
 - with np back-to-back events
 - Λp→np

Instrumental Asymmetry

(π,pC) reaction : Only Strong Interaction Asymmetry = 0 expected

	Horizontal	Asymmetry	
	Scattering Angle	⁶ Litarget	¹² C target
Proton	$2 < \mid \theta \mid < 6^{\circ}$	-0.000 ± 0.002	0.000 ± 0.002
	$6 < \mid \theta \mid < 9^{\circ}$	0.003 ± 0.002	-0.003 ± 0.003
	$9 \le \mid \theta \mid \le 15^{\circ}$	0.003 ± 0.002	0.001 ± 0.002
Pion	$2 \le \mid \theta \mid \le 6^{\circ}$	-0.001 ± 0.001	-0.002 ± 0.002
	$6 < \mid \theta \mid < 9^{\circ}$	0.003 ± 0.001	0.002 ± 0.002
	$9 < \mid \! \theta \mid \! < \! 15^{\circ}$	0.000 ± 0.001	-0.003 ± 0.002

Instrumental Asymmetry < 0.3%

mesonic decay

- Polarization of Λ
 - $A_{\pi} = \alpha_{\pi} P_{\Lambda} \epsilon$

A_{π}: Asymmetry of π α_{π} : Asymmetry Parameter of mesonic decay (=-0. 642 ± 0. 013)

- P_{Λ} : Polarization of Lambda
- ϵ : Attenuation factor
- Asymmetry Parameter of Proton $A_p = \alpha_p^{NM} P_{\Lambda} \epsilon$

We can calculate ${}_{p}\alpha^{NM}$ without theoretical hel

Asymmetry parameter of ${}^{5}_{\Lambda}He$

np coincidence analysis

¹²_AC Hypernuclear mass spectra

Polarization of A

Summary

- We performed precise α_p^{NM} measurements of ${}_{\Lambda}^{5}$ He(s-shell) and ${}_{\Lambda}^{12}$ C, ${}_{\Lambda}^{11}$ B(p-shell) hypernuclei.
- Slightly positive α^{NM}_p (0.07±0.08^{+0.08}_{-0.00}) of s-shell hypernuclei was confirmed and α^{NM}_p of np back-to-back event also supports this tendency(0.31±0.22).
- In the case of p-shell hypernuclei, our result (-0.24 \pm 0.26 $\stackrel{+0.08}{_{-0.00}}$) contradicts large negative α_p^{NM} which obtained previous experiment with several times higher statistics.
- Theoretical calculation is inconsistent with our results, it means new reaction mechanism are required.

Spare OHP

Summary

(KEK-PS K6 beamline & SKS)

PID distribution

Significance of asymmetry measurement

If assuming initial S state

Initial state	Final state	Amplitude	Isospin	Parity
10	${}^{1}S_{0}$	а	1	No
3 0	${}^{3}P_{0}$	b	1	Yes
	¹ S ₁	С	0	No
3 c	³ D ₁	d	0	No
3 ₁	¹ P ₁	е	0	Yes
	³ P ₁	f	1	Yes

 $\alpha_{p}^{NM} = \frac{\sqrt{3}/2[-ae+b(c-\sqrt{2}d)/\sqrt{3}+(\sqrt{2}c+d)f]}{1/4\{a^{2}+b^{2}+3(c^{2}+d^{2}+e^{2}+f^{2})\}}$

• We can know the Interference between states with different Isospin and Parity .

$$\Gamma_n / \Gamma_p = \frac{2(a^2 + b^2 + f^2)}{a^2 + b^2 + c^2 + d^2 + e^2 + f^2}$$

(Applying $\Delta I=1/2$ rule)

Theoretical and Experimental data					
		s-shel <u>1</u> (⁵ He)		p-shell ₁ (¹² C, ¹¹ B)	
		$\Gamma_{ m n}/\Gamma_{ m p}$	$lpha^{ ext{NM}}$	$\Gamma_{\rm n}/\Gamma_{\rm p}$	$lpha^{ ext{NM}}$
oretical culation	Sasaki <i>et al.</i> [2] OPE	0.133	-0.441		
	$\frac{\pi + \kappa}{\pi + K + DQ}$	0.450	-0.362 -0.678		
Inec	$\begin{array}{c} \text{Parreno et at.[5]} \\ \text{OPE} \\ \pi + K \end{array}$	0.086	-0.252	$0.078 \sim 0.079$	-0.340
tal	M+R OME	$0.288 \sim 0.498$ $0.343 \sim 0.457$	$-0.675 \sim -0.682$	$0.205 \sim 0.343$ $0.288 \sim 0.341$	$-0.716 \sim -0.734$
perımen data	BNL 1991[4] KEK-E160[5][6]	0.93 ± 0.55		$\frac{1.33^{+1.12}_{-0.81}}{1.87^{+0.67}_{-1.16}}$	-1.3±0.4
	KEK-E278[7][8] KEK-E307[9]	1.97 ± 0.67	$0.24{\pm}0.22$	$1.17^{+0.22}_{-0.20}$	

Estimation of Attenuation Factor

To estimate the attenuation factors(ϵ), I checked angle distribution of decay particles.

Summary

- We performed precise α_p^{NM} measurements of ${}_{\Lambda}^{5}$ He(s-shell)/ ${}_{\Lambda}^{12}$ C, ${}_{\Lambda}^{11}$ B(p-shell) hypernuclei.
- Slightly positive α_p^{NM} (0.07 ± 0.08^{+0.08}_{-0.00}) of s-shell hypernuclei was confirmed and α_p^{NM} of np back-to-back event also supports this tendency (0.31 ± 0.22).

In the case of p-shell hypernuclei, our result $(-0.24 \pm 0.26^{+0.08}_{-0.00})$ contradicts large negative α_p^{NM} which obtained previous experiment with several times higher statistics.

Spare OHP (for E462 experiment)

Proton Energy Dependence

Proton energy dependence

Spare OHPs (for E508 experment)

Asymmetry of p-shell hypernuclei

	Horizontal	Asymmetry (after correction)		
	Scattering Angle	¹² ^ C	¹¹ ^ AB	
Pion	2<10 1<6°	-0.040± 0.071	0.060± 0.059	
	6<10 1<9°	0.017+ 0.080	-0.084+ 0.069	
	9<1A 1<15°	-0094+0076	-0158+0065	
Proton	2<10 1<6°	-0.032+ 0.040	-0.011+ 0.053	
	6<10 1<9°	-0.090+ 0.045	-0.042+ 0.061	
	9 <i0 i<15°<="" td=""><td>-0.014+ 0.046</td><td>0.044+ 0.061</td></i0>	-0.014+ 0.046	0.044+ 0.061	

All the regions, Asymmetry is very sm

Polarization of A (E160)

Asymmetry Parameter @ E160 P_A

Comparison with E160

Spare OHPs (others)

Neutral particle analysis

