High-resolution γ-ray spectroscopy of hyperfragments produced by stopped K method

K.Miwa, H.Akikawa, Y.Fukao, H.Hotchi, K.Imai, Y.Miura, K.Mizunuma, S.N.Nakamura, M.Niiyama, S.Ota, P.K.Saha, H.Takahashi, T.Takahashi, H.Tamura, K.Tanida, S.Terashima, M.Togawa, and M.Ukai

^aDepartment of Physics, Kyoto University

^bRIKEN(The Institute of Physical and Chemical Research)

^cDepartment of Physics, Tohoku University

^dBrookhaven National Laboratory

^eLaboratory of Physics, Osaka Electro-communication University

The purpose of γ-ray spectroscopy of hypernuclei

The Hyperball project has revealed the structure on light hypernuclei with a few keV energy resolution!

- · Precise measurement of the level structure
 - information of spin-dependent ΛN interaction

Hyperball

- Impurity nuclear physics induced by Λ
 - shrinkage of nuclei
- Medium effect of baryons

But, in these experiment where (π^+, K^+) , (K^-, π^-) reaction were used, a beam time of more than one month is necessary for each target. The systematic study of hypernuclei is difficult within a reasonable beam time.

For the systematic study of hypernuclei

stopped K⁻ method and Hyperball

- hypernuclei are produced abundantly(8%/stopped k)
- · various species of hypernuclei are produced,
- · neutron (proton) rich hypernuclei

There is a chance to observe many γ rays from various hypernuclei in one experiment

Some difficulties

Many background Identify of γ ray

good energy resolution of germanium detector γ — γ coincidence method

We want to show this method is suitable for γ -ray spectroscopy, and make great progress to the γ -ray spectroscopy of hypernuclei

E509 Experiment

KEK 12GeV PS
K5 beam line
650MeV/c K⁻beam
K⁻ • • • 14k/spill

K beam= $B1 \times B2 \times B3 \times (LC2 + LC3)$ Stop K = K beam \times FV

160

γ-detector · · · Hyperball

 $trigger = stop K \times \Sigma(Ge \times BG\overline{O})$

Target

⁷ Li, ⁹ Be, ¹⁰ B, ¹¹ B, ¹² C

To see the target dependence of γ -ray yield

Target dependence ? \longrightarrow γ ray from others

Yes γ ray from target

From normal nuclei ($A \le 12$)?

No

Candidate of hypernuclei

γ-ray spectrum

Many γ rays were observed

List of γ rays (target dependent, not normal nuclei)

E _Y (keV)	target
1302	⁹ Be ¹⁰ B ¹¹ B
2049	¹⁰ B ¹¹ B ¹² C ₂

$^{7}_{\Lambda}\text{Li}(5/2^{+}\rightarrow 1/2^{+})\text{E2}$ transition

7
Li(5/2+ \rightarrow 1/2 +)E2 transition

$$E_{\gamma} = 2049.4 \pm 0.3 \pm 0.5 \text{ keV}$$

Peak Count =
$$516 \pm 74(^{10}B)$$

E419 (In-flight reaction)
PeakCount=197
beam time=1 month

2.5 times more statistics within 3.5 days beam time

 γ -ray intensity of $^{7}_{\Lambda}$ Li

 $E2(5/2^+ \rightarrow 1/2^+)$ transition

 $0.075 \pm 0.016\%$ / stopped K^{-} (10 B)

production mechanism of hyperfragment

Another candidate

We observed an unknown γ ray in ${}^{9}\text{Be}, {}^{10}\text{B}, {}^{11}\text{B}$ target.

$$E\gamma = 1302.9 \pm 0.6 \text{ keV}$$

Possibility of $\gamma-\gamma$ coincidence

Cascade of
$${}^{7}_{\Lambda}\text{Li}(7/2^{+} \rightarrow 5/2^{+} \rightarrow 1/2^{-})^{+}$$

This experiment

It was impossible because of low efficiency of germanium detector caused by BGO pile-up trouble.

3.88 1/2+

From the background level measured in this experiment, $\frac{7}{\lambda}$ Li we conclude that γ - γ coincidence becomes possible by improving the photo-peak efficiency. This improvement can be realized by adjusting beam condition.

Furthermore the upgraded Hyperball having large photo peak efficiency is now under development.

Summary

- We performed an experiment to measure γ ray from hyperfragment produced by stopped K⁻ method at the KEK K5 beam line. We employed Hyperball as γ -ray detector.
- We clearly observed χ Li E2(5/ 2 \to 1/ 2) transition by stopped χ method for the first time, and obtained that the γ -ray intensity is 0.075 ± 0.016 % per stopped χ
- From the result of this pioneering experiment, we conclude γ - γ coincidence become possible by improving photo-peak efficiency.
- This method is promising for the systematic study of γ -ray spectroscopy of hypernuclei.

AN interaction

Effective potential of ΛN interaction $V_{\Lambda N} = V_{0}$ $+V_{s}(r)\vec{s}_{\Lambda} \cdot \vec{s}_{N}$ Spin spin interaction $+V_{\Lambda}(r)\vec{L} \cdot \vec{s}_{\Lambda}$ Spin(Λ) orbit force $+V_{N}(r)\vec{L} \cdot \vec{s}_{N}$ Spin(N) orbit force $+V_{N}(r)\vec{L} \cdot \vec{s}_{N}$ Spin(N) orbit force $+V_{N}(r)\vec{L} \cdot \vec{s}_{N}$ E930 ($^{9}_{\Lambda}Be$) $+V_{N}(r)\vec{L} \cdot \vec{s}_{N}$ Spin(N) orbit force $+V_{N}(r)\vec{L} \cdot \vec{s}_{N}$ E930 ($^{16}_{\Lambda}O$)

valuable information

But, in these experiment where (π^+, K^+) , (K^-, π^-) reaction were used, a beam time of more than one month is necessary for each target. The systematic study of hypernuclei is difficult within a reasonable beam time.

About ⁴₁H

There is a broad peak in the expected energy Region (~1100 keV), we cannot recognize the target dependence.

Analysis of BGO

BGO occurred pile-up due to high intensity of beam, almost attributed π^-

BGO
Single rate 700kHz
Width 650nsec

The points to be improved 5 12000

We can reject such event by offline analysis.

Target

⁷Li, ⁹ Be, ¹¹B, ¹²B, C

生成されるハイパーフラグメント のターゲット依存性を考慮

Comparison of ¹⁰B and ⁷Li

γ -ray spectroscopy of Li_{λ}^{7}

Hyperball初めての実験

基底状態の2重項の間隔

ANのスピン・スピンカ

Identification of K

used B2 ADC and LC1 ADC

Hyperball

14 set of germanium detector

Large solid angle (15%)

Figure 4: Schematic drawings of Hyperball.