Experimental Production of S=-2 systems

HYP2003 at J-Lab Oct.14-18,

Kazuma Nakazawa Phys. Dept., Gifu Univ. October 15, 2003

Outline

- Introduction
- H-dibaryon search KEK-E522
- Double-hypernuclei KEK-E373 BNL-E964 BNL-E961

• Summary

Making a nuclear chart of double-hypernuclei

=> Information Λ - Λ force,

Experimental motivation

for understanding B-B int. in SU(3)*f* investigating Multi-strangeness system, "strange matter"

$$\Delta B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) = B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) - 2B_{\Lambda}(^{A-1}_{\Lambda}Z)$$

= $2M(^{A-1}_{\Lambda}Z) - M(^{A-2}Z) - M(^{A}_{\Lambda\Lambda}Z)$

Existence of the H-dibaryon

$$M_H \ge 2m_\Lambda - B_{\Lambda\Lambda}$$

Coupling effect

$$|H>=\sqrt{\frac{1}{8}}|\Lambda\Lambda>+\sqrt{\frac{4}{8}}|N\Xi>-\sqrt{\frac{3}{8}}|\Sigma\Sigma>$$

HYP2003 at J-Lab Oct.14-18,

Predicted masses

H-Dibaryon

0

Updated from the year 1995, referred on

S.V.Bashinsky, R.L.Jaffe, Nucl. Phys. A625(1997)167,

and W.J.Lope, talk given at '12th Winter Workshop on Nuclear Dynamics'

H-Dibaryon near the AA threshold

р

J.K.Ahn et al., (KEK-E224) Phys. Lett. B444 (98) 267

Analyses of 2002 run are ongoing. Expecting higher statistics with several times as large as E224

KEK-E373 : Study of S=-2 nuclear systems

HYP2003 at J-Lab Oct.14-18,

Study of S=-2 Nuclear System by an Emulsion-Counter Hybrid Method

KEK-E373 collaborators

Japan(16 Univ. · Inst.)

Aichi-edu, Gifu, Higashi-Nippon-Kokusai, KEK, Kobe, Kyoto, Kyoto-Sangyo, Nagoya, Nat. Inst. Rad. Sci., Osaka-city, Osaka-ele.-comm., Science-center Osaka pref., Toho, Tohoku, Tokyo, Tsuru

Korea(4 Univ.)

Gyeonsang National Univ., Chonnam National Univ., Wonkwang Univ., Konkuk Univ., Korea Univ.

USA(3Univ. Inst.)

BNL, Univ. New Mexico, Carnegie Mellon Univ. UK(1Univ.) Univ. College London

Analysis for 10^3 stopped Ξ^- events (statistics 10 times more than KEK-E176)

- Λ - Λ interaction energy
- existence of *H*dibaryon
- $\Lambda\Lambda$ weak interaction ($\Lambda\Lambda \cdot = \Lambda$ *n*, Σ *N*)
- level energy of Ξ in nucleus

n Scintillating-fiber bundle (KEK-E373)

HYP2003 at J-Lab Oct.14-18,

Readout with Image Intensifier Tube and CCD Diameter of a fiber : 45 μm Cross section of a bundle : 0.7 x 0.7 mm² Width of a sheet : 42 mm Constructed with 4 sheets (u, v, u', v') Precision(r.m.s) estimated with proton 25 mrad (angle) / 75 μm (position)

Scintillating-fiber blocks I (KEK-E373)

HYP2003 at J-Lab Oct.14-18,

p

Readout with Image Intensifier Tube and CCD Cross section of a fiber : 0.3 x 0.3 mm² Cross section of a block : 10 x 10 x 10 cm³ There is almost NOT dead area.

∼ 100µm

KEK-E373: Automatic track finding

HYP2003 at J-Lab Oct.14-18,

P A Algorism
1) Take pictures at different *z*(focusing)position.

Video Image

Double hypernucleus #2

U-Z V-Z

HYP2003

n	Re	2 CO	ns	t	ructio	n and	ΔB	ΛΛ	Л	റെ	9V		at J-Lab Oct.14-18
p	Λ	by	y Y.S	S .]	Iwata & H.	Takahashi	= d	louble-hyp.	#2	#5	ау #6	$B_{\Lambda\Lambda}$ [MeV]	$\Delta B_{\Lambda\Lambda}$ [MeV]
D ₁	roduc	otion					_	$^{5}_{\Lambda\Lambda}$ He	$^4_{\Lambda}{ m He}$	p	π^{-}	7.1 ± 0.5	2.4 ± 0.5
								$^{6}_{\Lambda\Lambda}$ He	$^{5}_{\Lambda}{ m He}$	p	π^{-}	6.9 ± 0.6	0.6 ± 0.6
Target	t #1	#3 🧃	#4		$B_{\Lambda\Lambda}$ [MeV]	$\Delta B_{\Lambda\Lambda}~[{\rm MeV}]$		_{۸۸} Не	$^{5}_{\Lambda}$ He	p	$\pi^{-} \ln$	< 8.6	< 0.3
^{12}C	_ ⁶ He	⁴ He	p 2	2n	> 16.9	> 10.6		$^{7}_{\Lambda\Lambda}$ He	⁶ _Л Не	p	π^{-}	6.3 ± 0.7	-2.0 ± 0.7
12 C	611-	4u.	י ג ג	1	145 ± 0.7	89407		$^{8}_{\Lambda\Lambda}$ He	$^{5}_{\Lambda}{ m He}$	p	$\pi^{-} 2n$	< 6.8	< -7.2
U	ллпе	пе	<i>a</i> .	174	14.0 ± 0.7	8.2 ± 0.7		$^{8}_{\Lambda\Lambda}$ He	$^{5}_{\Lambda}{ m He}$	d	$\pi^{-} \ln$	< 7.4	< -6.6
^{12}C	$^{6}_{\Lambda\Lambda}$ He	⁴ He	t		7.3 ± 0.2	1.1 ± 0.2		$^{8}_{\Lambda\Lambda}$ He	$^6_{\Lambda}$ He	p	$\pi^{-} \ln$	< 6.6	< -7.4
$^{12}\mathrm{C}$	$^{7}_{\Lambda\Lambda}$ He	⁴ He	p 1	ln	21.6 ± 1.3	13.3 ± 1.3		$^{8}_{\Lambda\Lambda}$ He	7∧Heα	p	π^{-}	7.7 ± 0.8	-6.3 ± 0.8
^{14}N	. ⁶ He	⁷ Li	ກໍ	1n	24.4 ± 2.1	18.2 ± 2.1		$^{9}_{\Lambda\Lambda}$ He	$^{5}_{\Lambda}{ m He}$	p	$\pi^{-} 3n$	< 7.2	< -7.1
14	ΛΛ ¹¹⁰	<u> </u>	Р.					$^{9}_{\Lambda\Lambda}$ He	$^5_\Lambda { m He}$	d	$\pi^{-} 2n$	< 8.2	< -6.1
^{14}N	$^{6}\Lambda\Lambda$	٥Li	d 1	ln	25.8 ± 1.3	19.6 ± 1.3		$^{9}_{\Lambda\Lambda}$ He	$^{5}_{\Lambda}{ m He}$	t	$\pi^{-} \ln$	< 11.2	< -3.1
^{14}N	$^{6}_{\Lambda\Lambda}$ He	⁴ He ⁴	He 1	ln	17.9 ± 1.5	11.7 ± 1.5		$^{9}_{\Lambda\Lambda}$ He	⁶ Не	p	$\pi^{-} 2n$	< 7.2	< -7.1
^{14}N	∧7Li	⁴ He	t 1	ln	26.2 ± 0.9	17.2 ± 0.9		$^{9}_{\Lambda\Lambda}$ He	⁶ _Л Не	d	$\pi^{-} \ln$	< 8.4	< -5.9
1 <i>4</i> n t	лл Фт•			1	01 M 1 4 0	170110		$^{9}_{\Lambda\Lambda}$ He	$^{7}_{\Lambda}$ He ^a	p	$\pi^{-} \ln$	< 11.2	< -3.1
T IN	лắы	р ч	He .	n	31.3 ± 1.8	17.9 ± 1.8		⁹ He	7 Hea	d	π^{-}	13.4 ± 0.5	-0.9 ± 0.5
¹⁶ O	$^{8}_{\Lambda\Lambda}$ Li	⁴ He ⁴	He 1	ln	31.1 ± 0.9	19.9 ± 0.9		⁹ He	⁸ _Λ He	p	π^{-}	6.4 ± 0.8	-7.9 ± 0.8
							. =						

 $(\Delta B_{\Lambda\Lambda} < 20 MeV)$

 $(\Delta B_{\Lambda\Lambda} > -20 MeV)$

http://www.phys.ed.gifu-u.ac.jp/Topics/NAGARA-e.htm

Double hypernucleus #3

HYP2003 at J-Lab Oct.14-18,

 $----K^-$, K^+ tracks measured by the spectrometer system

- -- Ξ track measured by the SciFi-Bundle detector
- extrapolated line using the position and angle informations of track#7 in the emulsion stack

BNL-E964: More S= -2 systems

International collaboration

AGS-E964(BNL)

Systematic Study of Double Strangeness System by an Emulsion-Counter Hybrid Method

AGS-E964 collaborators (now)

R. E. Chrien, H. Hotchi, M. May, P. Pile, A. Rusek (BNL, USA), H. Guo, Z. Liu, S. Lu, J. Zhou (CLAE, China),
G. B. Franklin (CMU, USA), K. Nakazawa, M. Mitsuhara (Gifu, JPN), J. S. Song, C. S. Yoon (GNU, Korea), Ed. Hungerfold, K. J. Lan, Y. Cui, Song (Houston, USA),
H. Funahashi, K.Imai, M. Nakamura, N. Saito, M. Yosoi (Kyoto, JPN),
B. Bassalleck (New MX, USA), K. Yamamoto, T. Yoshida (OCU, JPN),
P. K. Saha (Osaka E-C, JPN), J. K. Ahn, S. J. Kim (Pusan, Korea), K. Tanida (Riken, JPN), S. Ogawa, H. Shibuya (Toho, JPN),
Y. Miura, K. Mizunuma, H. Tamura, M. Ukai (Tohoku, JPN), and Graduate Students

- Approved by PAC Oct. '01
- Funding approved in Japan from FY03 to FY07
- Preparation '03~
- **Data taking** '05, '06 (??)
- Data analysis
- Ten times higher statistics than KEK-E373 !!
 =>10⁴Ξ[−]stopping events
- First measurement of X-ray from S=-2 systems.

HYP2003 at J-Lab Oct.14-18,

HYP2003 at J-Lab Oct.14-18,

Ξ^- atomic X rays $\rightarrow \Xi N$ interaction

Expected energy shifts (keV) Transition $E_{Coulomb}$ (a) (b) Ag 370.5 0.28 -- 3.3 (8,7)->(7,6) Br 315.5 0.73 -- 5.5

(7,6)->(6,5)

p

OAGS-E964(BNL)

- stage drive : Non-Stop
- image capture : 100Hz

Development of new-type emulsionHYP2003 at J-Lab Oct.14-18,

Production method of Emulsion gel will be changed. For E964, amount of emulsion gel => 2.4 tons Fuji-film needs one year or more by conventional way.

Under inspection of quality

Summary : More S=-2 systems

HYP2003 at J-Lab Oct.14-18,

- Recently, "Nagara event" opened the door of S=-2 systems, however it is only one event!!
 - Future experiments give us more rich information by making a S=-2 nuclear chart, which is quite useful for understanding B-B int. in $SU(3)_f$ and multi-strangeness system.
 - This progress is coming from developments of hybrid-emulsion technique, scanning method, Hyperball, High-quality Kaon beam, and so on.

		KEK-E176	KEK-E373	BNL-E964
Beam Quality : K–	/ beam	0.3	0.2	0.9
# of K- (K- / spill))	~ 10^9 (3*10^3)	~ 10^10 (~10^4)	~ 10^11 (~10^5)
Emulsion Volume	(liters)	30	70	210
Ξ– stoppingevent search	Tracking method	K+(SSD) mannual	Ξ– (SCIFI) auto & mannual	Ξ– (DSSD) automated
X- and γ-rays mea	asurement			YES (Hyper-ball)

HYP2003 at J-Lab Oct.14-18,

Rough yield estimation

			at 70% finished			
]	E176	E373	E964		
# of Ξ - stopping	event	~80	~1*10^3	~1*10^4		
# of Double- Λ	* Light	1 (+1?)	3(+a few?)	Several *10 or more? (+ α)		
hypernucleus	* Heavy	3	Not yet anal.	100 or more?		
	* (K-,K+)point	(3)	We will try	100 or more?		

