HYP2003

Parallel Session 1

KEK
H. Noumi
for the E438 Collaboration
s-Nucleus Potentials
in Medium to Heavy Nuclei

Physics Motivation

How is the Σ-Nucleus (U_{Σ}) Potential?
OIsospin dependent U_{Σ} in light systems

- a bound state in $\mathrm{A}=4$ (PRL80('98)1605)
- systematics of ($\mathrm{K}^{-}, \pi^{\mathrm{E}}$) in $\mathrm{A}=4,6,9$ (PRL83('99)5238)
$\bigcirc \Sigma^{-}-$atomic X ray data suggest that...
- attractive/m. absorptive in tp-potential
- repulsive/s. absorptive in DD-potential
(PTP117(`94)227)
o No other data is available...
- Poor YN Scattering Data M.E.P.: ESC02 $\leftarrow \rightarrow$ ESC03

QM: repulsive in $\Sigma \mathrm{N}(\mathrm{I}=3 / 2)$?

- $\left(\mathrm{K}^{-}, \pi^{\mathrm{E}}\right)$ spectra on AO 16

$$
V_{\Sigma}\left(\operatorname{Re} U_{\Sigma}\right)>-10 \mathrm{MeV} \text { from }{ }^{12} \mathrm{C}\left(\text { stopped } \mathrm{K}^{-}, \pi^{+}\right)
$$

Role of Σ^{-}in Neutron Star

S. Balberg and A. Gal, NPA625(1997)435

Normal

No Sigma Appears
V_{Σ} : repulsive

Inclusive (π, K^{+}) Spectra on C, Si, Ni, In, \& Bi

P. K. Saha, PhD thesis, KEK-Rep.2001-17

Spectrum Analysis based on DWIA

Inclusive (π^{-}, K^{+}) Spectrum

$$
d^{2} \sigma / d \Omega d E=\beta \cdot \overline{d \sigma / d \Omega_{e l e m}} \cdot S(E)
$$

Strength Function:

$$
\begin{aligned}
& S(E)=-1 / \pi \operatorname{Im} \sum_{\alpha} \int_{\alpha^{\prime}} d r d r^{\prime}\left[f^{+}{ }_{\alpha}\left(r^{\prime}\right) G_{\alpha \alpha^{\prime}}\left(E ; r^{\prime}, r\right) f_{\alpha^{\prime}}(r)\right\} \\
& f_{\alpha^{\prime}}(r)=\chi^{(-)} *(R) \chi^{(+)}(R)\langle\alpha| \psi_{N^{\prime}}(r)|i\rangle, R=\left(M_{c^{\prime}} M_{h y}\right) r
\end{aligned}
$$

Green's Function:

$$
\begin{aligned}
G_{\alpha \alpha}\left(E ; r^{\prime}, r\right) & =\langle\alpha| \psi_{\Sigma}(r) \frac{1}{E-H+i \eta} \psi^{+}\left(r^{\prime}\right)|\alpha\rangle \\
& \Rightarrow\left(\frac{\hbar^{2}}{2 \mu} \Delta+E-U_{\Sigma}\right) G\left(E ; r^{\prime}, r\right)=-\delta\left(r^{\prime}-r\right)
\end{aligned}
$$

One Body Potential Parameters: Woods-Saxon Type

$$
\begin{aligned}
U_{x}(r) & =\left(V_{x}+i W_{x}\right) f(r)+V_{\text {so }}\left(h / m_{\pi} c\right)^{2} r^{1} d f / d r(l . \sigma)+V_{\text {Coulomb }}(r) \\
& =\Sigma \text { or } T G T, \quad f(r)=1 /[1+\exp \{(r-c) / z\}]
\end{aligned}
$$

Fermi-averaging of the Elementary Cross Section

Fermi motion of a proton $\rightarrow k$ k Σ^{-}

$$
\begin{aligned}
\overline{d \sigma / d \Omega}_{e l e m}(E) & =\frac{\int \rho(k)[d \sigma / d \Omega(s, t)] \delta(k-P) d k}{\int \rho(k) \delta(k-P) d k} \\
P & =k_{K_{+}}+k_{\Sigma^{-}}-k_{\pi^{-}}
\end{aligned}
$$

$\mathrm{d} \sigma / \mathrm{d} \Omega_{\mathrm{\Sigma}^{-}}(\mathrm{s}, \mathrm{t})=\sum_{n} A_{n} P_{n}\left(\cos \theta_{\mathrm{K}^{+}}\right)$in CM

M.L. Good et al., PR183, 1142(1969) J.C. Doyle et al., PR165, 1483(1968) O.I. Dahl et al., PR163, 1430(1967)

Fermi-averaged $\mathrm{d} \sigma / \mathrm{d} \Omega_{\text {elem }}$ in Lab

DWIA application to the $\left(\pi^{+}, K^{+}\right)$spectrum

Fitting Results of the $\left(\pi^{-}, K^{+}\right)$spectra

$$
\begin{aligned}
& \text { Surveying } U_{\Sigma}=\left(V_{\Sigma}+i W_{\Sigma}\right) f(\boldsymbol{r}) \\
& \text { with choice of } \\
& \quad \mathrm{z}_{\Sigma}=0.67 \mathrm{fm} \text { and } \mathrm{c}_{\Sigma}=1.1(\mathrm{~A}-1)^{1 / 3} \mathrm{fm}
\end{aligned}
$$

Free parameter: the magnitude of the spectrum

Re U_{Σ} dependence

Si
W.S. Potential Parameters

Im U_{Σ} dependence

	U_{Σ}	U_{Si}
$\mathrm{z}(\mathrm{fm})$	0.67	0.537
$\mathrm{c}(\mathrm{fm})$	3.3	3.82
$\mathrm{~V} 0(\mathrm{MeV}$		-54.5

$\mathrm{Si}\left(\pi^{-}, \mathrm{K}^{+}\right)$

In PRL89, 072301(2002),

In the Present Work, took c~3.8 ($\sim 1.25 * \mathrm{~A}^{1 / 3}$) fm of $\operatorname{Si}(\ldots$ was 4.09 fm$)$ considered $\Delta \mathrm{L}$ in (π^{-}, K^{+}) up to 21 (...was 8)

Best Fit $\left(V_{\Sigma}, W_{\Sigma}\right)=(90,-40)$ in MeV (...was (150,-15)) Favor a repulsive $V_{\Sigma}>50 \mathrm{MeV},(\ldots$ was $>70 \mathrm{MeV})$ Weaker sensitivity for W_{Σ}, (... was $<-30 \mathrm{MeV}$)
$\operatorname{Re} U_{\Sigma}$ dependence

Ni

Im U_{Σ} dependence

	U_{Σ}	U_{Ni}
$\mathrm{z}(\mathrm{fm})$	0.67	0.517
$\mathrm{c}(\mathrm{fm})$	4.26	4.95
$\mathrm{VO}(\mathrm{MeV}$		-51.6

$\mathrm{Ni}\left(\pi^{-}, \mathrm{K}^{+}\right)$

CL~64\% for
CL $=0.75 \%$ for $\chi^{2}=80$ ($>0.01 \%$)
(100)
$\operatorname{Re} U_{\Sigma}$ dependence

In

W.S. Potential Parameters

$\operatorname{Im} U_{\Sigma}$ dependence

	U_{Σ}	$U_{\text {ln }}$
$z(\mathrm{fm})$	0.67	0.563
$\mathrm{c}(\mathrm{fm})$	5.35	6.24
$\mathrm{~V} 0(\mathrm{MeV}$		-51.4

$\operatorname{In}\left(\pi^{-}, K^{+}\right)$

$\operatorname{Re} U_{\Sigma}$ dependence

$-\mathrm{B}_{\Sigma^{-}}(\mathrm{MeV})$
Bi

Im U_{Σ} dependence

	U_{Σ}	U_{Bi}
$\mathrm{z}(\mathrm{fm})$	0.67	0.468
$\mathrm{c}(\mathrm{fm})$	5.35	7.42
$\mathrm{VO}(\mathrm{MeV}$		-55.5

$\mathrm{Bi}\left(\pi^{-}, \mathrm{K}^{+}\right)$

Summary

1. Inclusive (π^{-}, K^{+}) spectra on $\mathrm{Si}, \mathrm{Ni}, \mathrm{In}, \& \mathrm{Bi}$ were analyzed to extract U_{Σ} by the DWIA calculations.
\rightarrow This framework was successfully applied to reproduce the (π^{+}, K^{+}) spectrum on C
2. Repulsive Σ^{-}-nucleus potentials seem to be favored to reproduce the (π^{-}, K^{+}) spectra in all targets.
3. The best fit potential parameters were obtained in the surveyed region, $V_{\Sigma}: 30 \sim 150 \mathrm{MeV}, W_{\Sigma}:-20 \sim-60 \mathrm{MeV}$, as listed below:

	$V_{\Sigma}(\mathrm{MeV})$	$W_{\Sigma}(\mathrm{MeV})$
Si	+90	-40
Ni	+90	-50
In	+130	-50
Bi	+130	-30

Questions arise after the present demonstration...

1. How is the shape of $U_{\Sigma}(\mathrm{r})$?
: combined analysis/test with the other data
$\rightarrow \Sigma^{-}$atomic data/YN potential
: detailed structure at around $-B_{\Sigma}=0 \mathrm{MeV}$
: $\Sigma^{+/ 0}$-Nucleus Potential?
\rightarrow high resolution spectroscopy hopefully done in J-PARC
2. Is really U_{Σ} strongly repulsive?
: examine the analysis with different framework/people
: choice of $\mathrm{c}_{\Sigma} / \mathrm{z}_{\Sigma}$
Is c of $U_{Y}=1.1(A-1)^{1 / 3}$ a common sense?
