SU(3) chiral linear σ model for positive and negative parity baryons in dense matter

A. Ohnishi, K. Naito (Hokkaido Univ.)

- Introduction: Hyperons in Dense Matter
- * SU(3) Chiral sigma model with baryons
- *** Application to Symmetric Nuclear Matter**
- **Summary**

Hadronic Matter Phase Diagram



Hyperons in Dense Matter

Hyperons in Neutron Star (cf Talk by Bombaci, Vidana)

Tsuruta-Cameron (66), Langer-Rosen (70), Pand-haripande (71), Itoh(75), Glendenning, Weber-Weigel, Sugahara-Toki, Schaffner-Mishustin, Balberg-Gal, Baldo et al., Vidana et al., Nishizaki-Yamamoto-Takatsuka, Kohno-Fujiwara et al., ...

* Hyperons during Supernova Explosion

- Supernova explode in pure 1D hydro, but with v transport shock stalls.
- 3 %increase of v flux revive shock wave (Janka et al.)
- Hyperons increase explosion energy by around 4 % (Ishizuka, AO, Sumiyoshi, Yamada, in preparation)

Hyperons play crutial roles in dense matter, such as in neutron stars and supernova explosion.

Hyperon Potentials at High Densities

★ Hyperon Potentials at around ρ₀

$$U(\Lambda) \sim -30$$
 MeV $U(\Xi) \sim -(14-16)$ MeV (KEK-E224, BNL-E885, BNL-E906)

$$U(\Sigma) \sim (-30 \sim +150)$$
 MeV (Noumi / Kohno)

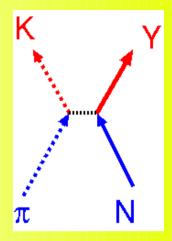
* Hyperon Potentials at high densities (V. Koch's talk)

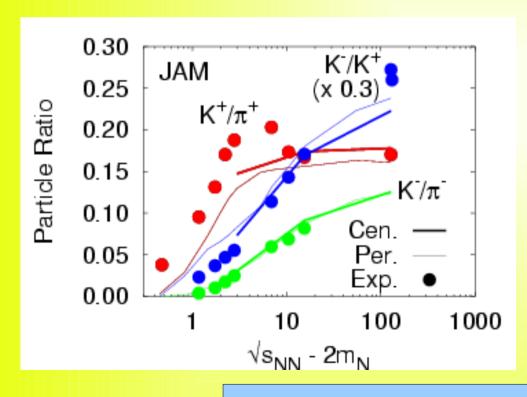
Exp't Info.: Hyperon flow, K⁺/π ⁺ enhancement, Theor. Prediction: Strongly depends on the model (Shinmura's Talk)

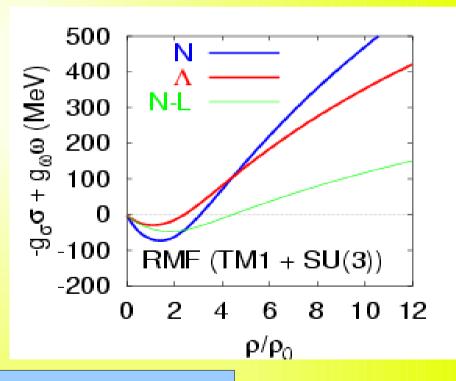
We need reliable models
with smaller number of free parameters
and/or derived from the first principle.
→ Chiral Symmetry

Does Hyperon Potential Help It?

- Rescattering of Resonances/Strings (RQMD)
- Baryon Rich QGP Formation
- High Baryon Density Effect (Associated Prod. of Y)







At $ho > 4
ho_o$, Hyperon Feels More Attractive Potential than N

Nuclear Matter in SU(2) Chiral Linear σ Model

* Chiral Linear σ Model

Good model in describing hadron properties.

Dynamical change of σ condensate

→ suitable for nuclear matter study

* Problems in Nuclear Matter

Naive model leads to sudden change of condensate, $\sigma \sim f_{\pi} \rightarrow 0$

 \rightarrow Dynamical generation of ω meson mass (σω coupling)

(J. Boguta, PLB120,34/PLB128,19)

Equation of State is too stiff.

→ Loop Effects (vacuum renormalization)

(N.K. Gledenning, NPA480,597,

M. Prakash and T. L. Ainsworth, PRC36, 346)

Higher order terms (σ^6 , σ^8)

(P.K. Sahu and AO, PTP104,1163)

Can we soften the EOS with Hyperons?

SU(3) Chiral Linear σ Model with Baryons

BBM coupling in SU(2) chiral linear σ model

* Hadron transformation

Baryons: fundamental repr.

$$N = \begin{pmatrix} p \\ n \end{pmatrix}$$
, $N_L \rightarrow L N_L$, $N_R \rightarrow R N_R$

Mesons: Adjoint repr.

$$M = \Sigma + i \Pi \rightarrow LMR^+$$

*** Chiral Invariant Coupling**

$$L_{BBM} = g (N_L^+ M N_R^- + N_R^+ M^+ N_L^-)$$

$$\to g (N_L^+ L^+ L M R^+ R N_R^- + c.c.)$$

How about in SU(3)?

Mesons and Baryons in SU(3)

* Meson Matrix

$$M = \begin{pmatrix} u \, \overline{u} & u \, \overline{d} & u \, \overline{s} \\ d \, \overline{u} & d \, \overline{d} & d \, \overline{s} \\ s \, \overline{s} & s \, \overline{d} & s \, \overline{s} \end{pmatrix} \qquad M_{PS} = \Pi = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} & K^0 \\ K^- & \overline{K}^0 & -\frac{2\eta}{\sqrt{6}} + \frac{\eta'}{\sqrt{3}} \end{pmatrix}$$

* Baryon Matrix

$$\Psi = \begin{pmatrix} rac{\Sigma^0}{\sqrt{2}} + rac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\ \Sigma^- & -rac{\Sigma^0}{\sqrt{2}} + rac{\Lambda}{\sqrt{6}} & n \\ E^- & E^0 & -rac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

BBM Coupling in SU(3) Chiral Linear sigma Model

★ Mesons: Transforms as in SU(2)

$$M = \Sigma + i \Pi \rightarrow L M R^+$$

- *** Baryons: Two kind of transformations are proposed**
 - Type 1: Stokes-Rijken '97, Gasiolowiz-Geffen 60's

$$\Psi_L^{(1)} \rightarrow L \Psi_L^{(1)} L^+$$
, $\Psi_R^{(1)} \rightarrow R \Psi_R^{(1)} R^+$

Lowest order chiral invariant coupling = BMBM

$$Tr \left(\overline{\Psi}_L^{(1)} M \Psi_R^{(1)} M^+\right) \rightarrow Tr \left(L \overline{\Psi}_L^{(1)} L^+ L M R^+ R \Psi_R^{(1)} R^+ R M^+ L^+\right)$$

Type 2: Papazoglou et., 98

$$\Psi_L^{(2)} \rightarrow L \Psi_L^{(2)} R^+$$
, $\Psi_R^{(2)} \rightarrow R \Psi_R^{(2)} L^+$

Lowest order chiral invariant coupling = D-type coupling

$$Det' \left(\overline{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right) \equiv \epsilon_{ijk} \epsilon_{lmn} \overline{\Psi}_{Ril}^{(2)} M_{jm} \Psi_{kn}^{(2)} \rightarrow |R| |L| Det' \left(\overline{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right)$$

Relation to Quark Field

* Spin half 3 quark field

Positive Parity, Having NR Limit (8 states)

$$B_{dc}^{(1)} = N^{-3} (q_{i,a}^T C \gamma_5 q_{j,b}) q_{k,d} \epsilon_{ijk} \epsilon_{abc}$$

Negative Parity, No NR Limit (9 states)

$$B_{dc}^{(2)} = N^{-3} (q_{i,a}^T C q_{j,b}) q_{k,d} \epsilon_{ijk} \epsilon_{abc}$$

(ijk: color, abcd: flavor)

★ Transformation properties

$$\Psi^{(1)} \equiv (B^{(1)} + \gamma_5 B^{(2)}) / \sqrt{2}$$
, $\Psi^{(2)} \equiv (B^{(1)} - \gamma_5 B^{(2)}) / \sqrt{2}$
 $\Psi_L^{(1)} \rightarrow L \Psi_L^{(1)} L^+$, $\Psi_R^{(1)} \rightarrow R \Psi_R^{(1)} R^+$
 $\Psi_L^{(2)} \rightarrow L \Psi_L^{(2)} R^+$, $\Psi_R^{(2)} \rightarrow R \Psi_R^{(2)} L^+$

SU(3) Chiral Invariant BBM Coupling

* Trace type coupling (G.A. Christos, Phys. Rev. D35 (1987), 330).

Another Type: $Tr\left(\overline{\Psi}_L^{(1)}M\ \Psi_R^{(2)}\right) \rightarrow Tr\left(L\ \overline{\Psi}_L^{(1)}L\ ^+LM\ R\ ^+R\ \Psi_R^{(2)}L\ ^+\right)$

$$-L_{BM}^{Tr} = \frac{g_{tr}}{\sqrt{2}} Tr \left(\overline{\Psi}_{L}^{(1)} M \Psi_{R}^{(2)} + \overline{\Psi}_{R}^{(1)} M^{+} \Psi_{L}^{(2)} \right) + h.c.$$

$$= g_{tr} \left(d_{abc} + i f_{abc} \right) \left(\overline{\psi}^{1a} m^{b} \psi^{2c} + h.c. \right)$$

* Determinant type Coupling (Papazoglou et. al. PRC57 (1998) 2576)

$$-L_{BM}^{Det} = \sqrt{2}g^{det}\left(Det'\left(\overline{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right) + h.c.\right)$$

$$= 2g_{det}d'_{abc}\overline{\psi}^{2a}m^{+b}\psi^{2c}$$

$$\left(m^{a} \equiv \sigma^{a} + i \gamma_{5}\pi^{a}\right)$$

In order to have both of D and F type BBM Coupling, We need two types of baryons!

Baryon Masses Hyp2003, J-Lab, Oct. 14-18, 2003 Explicit Breaking term

* Mean Field Approx. + Diagonalization

$$-L_{BM}^{MF} = \sum_{i} \left(\overline{\psi}_{i}^{1} \ \overline{\psi}_{i}^{2}\right) \begin{pmatrix} \mathbf{0} & \mathbf{g}_{tr} \sigma_{i} + \mathbf{n}_{i}^{s} \mathbf{m} \\ \mathbf{g}_{tr} \sigma_{i} + \mathbf{n}_{i}^{s} \mathbf{m}_{s} - \mathbf{g}_{det} \sigma'_{i} \end{pmatrix} \begin{pmatrix} \psi_{i}^{1} \\ \psi_{i}^{2} \end{pmatrix}$$

$$= \sum_{i} \left(\overline{\psi}_{i}^{[+]} - \overline{\psi}_{i}^{[-]}\right) \begin{pmatrix} M_{i}^{[+]} & \mathbf{0} \\ \mathbf{0} & -M_{i}^{[-]} \end{pmatrix} \begin{pmatrix} \psi_{i}^{[+]} \\ \psi_{i}^{[-]} \end{pmatrix}$$

$$\sigma_{i} \equiv \sqrt{\frac{2}{3}} \left(\sigma_{0} + a_{i} \sigma_{8}\right) , \quad \sigma'_{i} \equiv \sqrt{\frac{2}{3}} \left(\sigma_{0} + b_{i} \sigma_{8}\right)$$

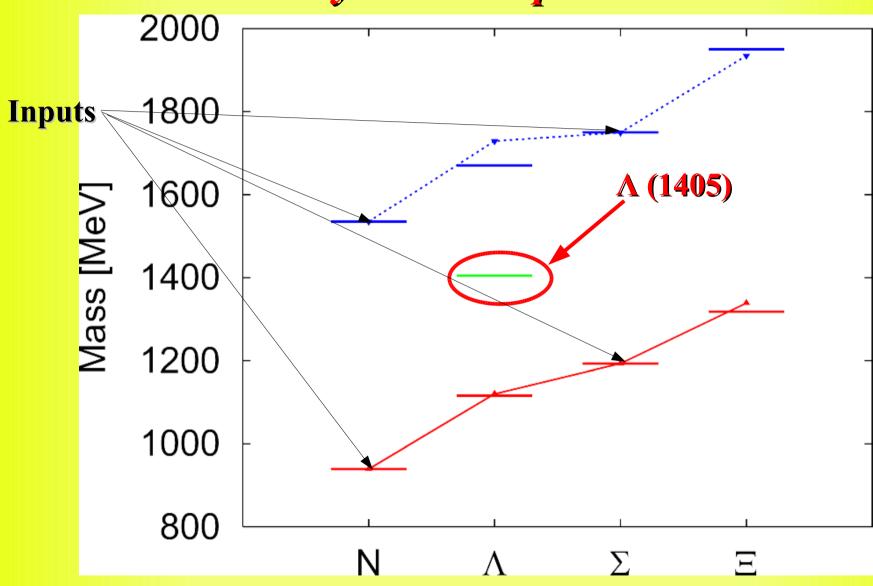
$$\begin{pmatrix} \psi_{i}^{1} \\ \psi_{i}^{2} \end{pmatrix} = \begin{pmatrix} \cos \theta_{i} & -\sin \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \end{pmatrix} \begin{pmatrix} \psi_{i}^{[+]} \\ \gamma_{5} \psi_{i}^{[-]} \end{pmatrix}$$

*** Positive and Negative Parity Octet Baryon Masses**

$$M_{i}^{[\pm]} = \sqrt{|g_{tr}\sigma_{i} + n_{i}^{s}m_{s}|^{2} + (g_{det}\sigma'_{i}/2)^{2}} \pm g_{det}\sigma'_{i}/2$$

Four Free Parameters < Numbers of Baryon Masses to be fitted

Baryon Mass Spectrum



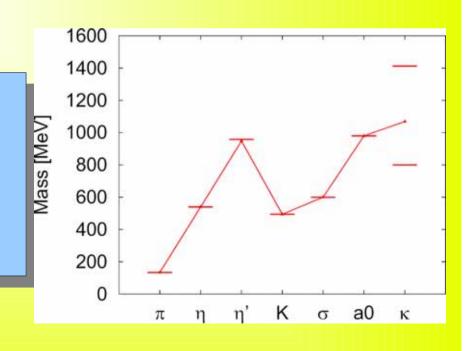
Positive and Negative Spin-half Baryon Masses are well reproduced except for Λ (1405)

Meson Lagrangian: Standard

$$\mathcal{L} = \frac{1}{2} \operatorname{tr} [\partial_{\mu} M \partial^{\mu} M^{\dagger}] - \frac{1}{2} \mu^{2} \operatorname{tr} [M M^{\dagger}]$$
$$- \lambda \operatorname{tr} [M M^{\dagger} M M^{\dagger}] - \lambda' \operatorname{tr} [M M^{\dagger}]^{2} + c(\det M + \det M^{\dagger})$$
$$+ \frac{\sqrt{3}D}{4} \left\{ \operatorname{tr} [M M^{\dagger} \lambda^{8}] + \operatorname{tr} [M \lambda^{8} M^{\dagger}] \right\} + c_{\sigma} \sigma + c_{\zeta} \zeta$$

Kinetic+ Second order + Fourth order + Det. Int. + Explicit breaking

Seven Free Parameters
Fitting 2 Decay constants (π and K)
and 4 Meson masses (π , K, η , a_{σ}) \rightarrow One parameter = σ Mass



Hyp2003, J-Lab, Oct. 14-18, 2003

Application to Symmetric Nuclear Matter

Mean Field Lagrangian

$$L^{MF} = \frac{\mu^{2}}{2} (\sigma^{2} + \zeta^{2}) - \frac{\lambda}{4} (\sigma^{2} + \zeta^{2})^{2} - \frac{\lambda'}{4} (\sigma^{4} + 2\zeta^{4}) + c \sigma^{2} \zeta$$

$$- \nu \zeta^{2} + H_{\sigma} \sigma + H_{\zeta} \zeta$$

$$+ \sum_{i} \left(\sum_{k=1,2} \overline{\psi}_{i}^{k} i \partial_{\mu} \gamma^{\mu} \psi_{i}^{k} \right)$$

$$+ \sum_{i} \left[g_{tr} (\overline{\psi}_{i}^{1} \psi_{i}^{2} + \overline{\psi}_{i}^{2} + \psi_{i}^{1}) (\sigma_{i} + n_{i}^{s} m_{s}) - g_{det} \overline{\psi}_{i}^{2} \psi_{i}^{2} \sigma'_{i} \right]$$

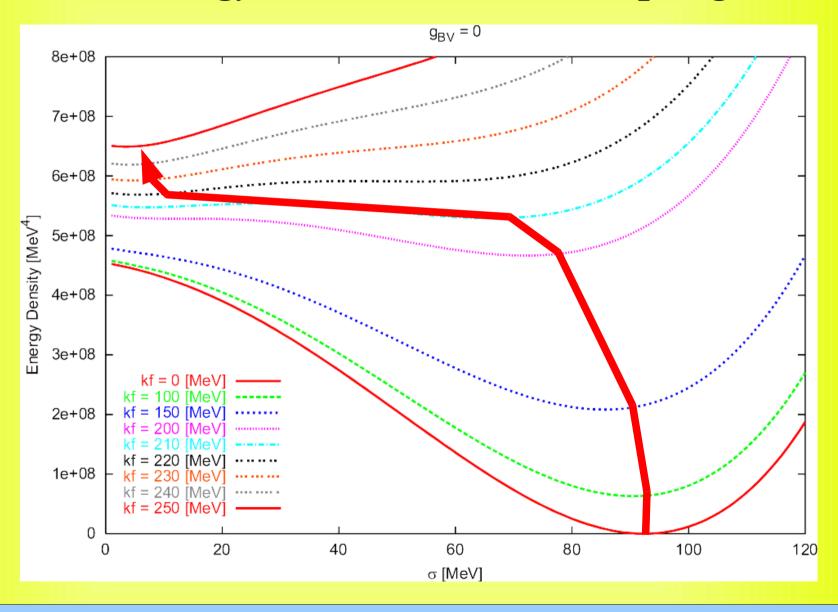
*** Equation of Motion**

$$\frac{\partial L}{\partial \sigma} = \mu^2 \sigma - \lambda (\sigma^2 + \zeta^2) \sigma - \lambda' \sigma^3 + 2c \sigma \zeta + H_{\sigma} - g_{\sigma}^{[+]} \rho_s = 0$$

In Symmetric Nuclear Matter,

$$g_{\sigma}^{[+]} = 2g_{tr}\sin\theta_N\cos\theta_N - g_{det}\cos\theta_N^2$$

Free Energy (1): without $\sigma \omega$ Coupling



Sudden Chage of σ Value \rightarrow Chiral Phase Transition below ρ_0

Mean Field Lagrangian

$$L^{MF} = \frac{\mu^{2}}{2} (\sigma^{2} + \zeta^{2}) - \frac{\lambda}{4} (\sigma^{2} + \zeta^{2})^{2} - \frac{\lambda'}{4} (\sigma^{4} + 2\zeta^{4}) + c \sigma^{2} \zeta$$

$$- \nu \zeta^{2} + H_{\sigma} \sigma + H_{\zeta} \zeta$$

$$+ \sum_{i} \left(\sum_{k=1,2} \overline{\psi}_{i}^{k} i \partial_{\mu} \gamma^{\mu} \psi_{i}^{k} \right)$$

$$+ \sum_{i} \left[g_{tr} (\overline{\psi}_{i}^{1} \psi_{i}^{2} + \overline{\psi}_{i}^{2} + \psi_{i}^{1}) (\sigma_{i} + n_{i}^{s} m_{s}) - g_{det} \overline{\psi}_{i}^{2} \psi_{i}^{2} \sigma'_{i} \right]$$

$$- g_{VB} \omega \rho_{B} + \lambda_{VS} \sigma^{2} \omega^{2} / 2$$

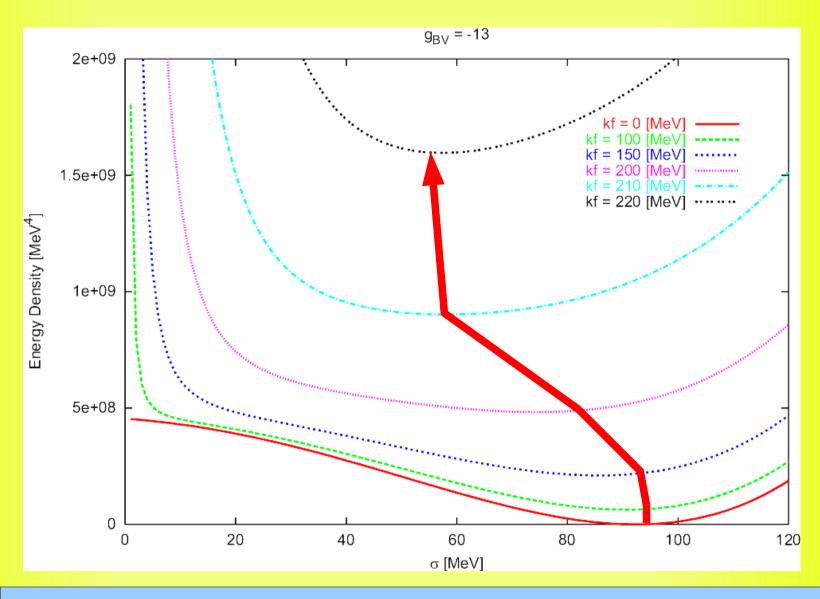
*** Equation of Motion**

$$\frac{\partial L}{\partial \sigma} = \mu^2 \sigma - \lambda (\sigma^2 + \zeta^2) \sigma - \lambda' \sigma^3 + 2c \sigma \zeta + H_{\sigma} - g_{\sigma}^{[+]} \rho_s + \lambda_{VS} \sigma \omega^2 = 0$$

$$\frac{\partial L}{\partial \omega} = -g_{VB} \rho_B + \lambda_{VS} \sigma^2 \omega = 0 \rightarrow \omega = g_{VB} \rho_B / \lambda_{VS} \sigma^2$$

$$m_{\omega}^2 = \lambda_{VS} \sigma^2 = 782 MeV \quad \text{(Boguta)}$$

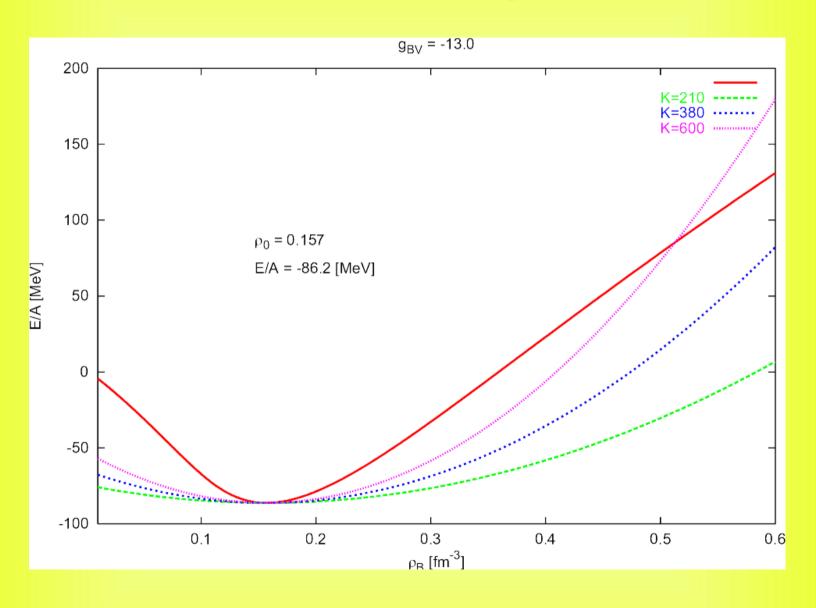
Free Energy (2): with $\sigma \omega$ Coupling



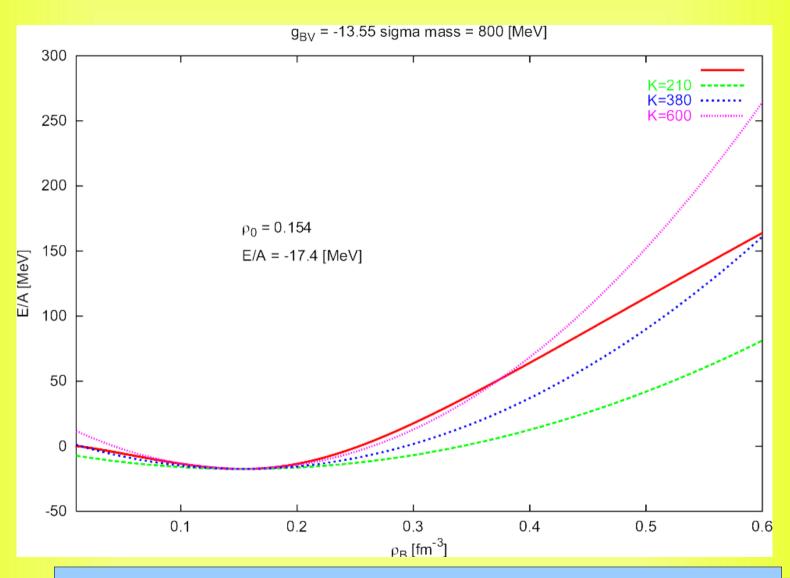
Smooth Chage of \(\sigma\) Value / Only One Local Minima

→ Stability of Normal Vacuum

Equation of State (1): $M_{\sigma} = 600 \text{ MeV}$



Equation of State (2): $M_{\sigma} = 800 \text{ MeV}$



We can fit ρ_0 and E/A by adjusting g_{BV} and M_{σ} but EOS becomes too stiff.

Summary

* An SU(3) chiral sigma model with baryons is presented.

Two types of transformation, B(1) and B(2) (Christos)
Two types of Lowest order BBM coupling

(Christos / Papazoglou et. al.)

Explicit breaking term (Strange quark mass) → **Octet Baryon Mass Meson Lagrangian: Standard**

Positive and Negative parity baryons are necessarily couple in constructing the lowest order chirally invariant Lagrangian having D as well as F coupling.

* This model is applied to symmetric nuclear matter.

Coupling of $\sigma \omega$:

Dynamical generation of vector meson mass (Boguta)

BV coupling:

Repulsive NN interaction

EOS = Too Stiff!

One problem in SU(2) model is not solved yet!

Problems and Future Directions

* How can we make EOS softer?

"Classical" Interaction BMBM
Loop (Gledenning / Prakash-Ainsworth)
Higher order terms (Sahu-AO)
Dilatation Field (Papazoglou et. al.)
Vector Realization (Sasaki-Harada)
Non-Linear Realization

* How does the model predict Hyperon Potentials in Dense Matter?

- **Behavior of Negative Parity Baryons in Nuclear Matter**
- ★ F/D Ratio in Pseudoscalar BB coupling = 1.6!
 (← emprically 0.5-0.7)
- **★ Perturbative contribution to condensate** in baryon and meson sectors.

		Transf.	Repr., (L,R)
Quarks Mesons	$M = \lambda_a(\bar{q}_R \lambda_a q_L)$	Lq_L, Rq_R LMR^{\dagger}	(3, 1), (1, 3) (3, 3*)
Baryons	Ψ_L^1, Ψ_R^1	$L\Psi_L^1L^\dagger$, $R\Psi_R^1R^\dagger$	(8, 1), (1,8)
	Ψ_L^2, Ψ_R^2	$L\Psi_L^2 R^{\dagger}$, $R\Psi_R^2 L^{\dagger}$	(3, 3*), (3*, 3)
$\Psi_L^1(8$	(1) $\Psi_R^1(1,8)$	$\Psi_{L}^{2}(3,3^{*})$	$\Psi_R^2(3$
<u> </u>	<u> </u>	0	$\operatorname{Tr}\left[ar{\Psi}_L^1\right]$

$$d'_{abc} \equiv \frac{1}{4} \epsilon_{ijk} \epsilon_{lmn} \lambda^a_{il} \lambda^b_{jm} \lambda^c_{kn}$$

$$= d_{abc} - \frac{\sqrt{6}}{2} \left[\delta_{a0} \delta_{bc} + \delta_{b0} \delta_{ca} + \delta_{c0} \delta_{ab} - 3 \delta_{a0} \delta_{b0} \delta_{c0} \right]$$

Isoscalar Vector Meson w

Dynamical generation of ω mass: σω Coupling

$$m_{\omega}^2 = \lambda_{VS} \sigma^2$$
 782 MeV

Coupling to Baryon: Repulsive BB interaction

$$g_{BV_1} \left\{ \operatorname{tr} \left[\overline{\Psi}_L^1 l_\mu \gamma^\mu \Psi_L^1 \right] + \operatorname{tr} \left[\overline{\Psi}_R^1 r_\mu \gamma^\mu \Psi_R^1 \right] \right\}$$

+
$$g_{BV_2} \left\{ \operatorname{tr} \left[\overline{\Psi}_L^2 l_\mu \gamma^\mu \Psi_L^2 \right] + \operatorname{tr} \left[\overline{\Psi}_R^2 r_\mu \gamma^\mu \Psi_R^2 \right] \right\}$$

$$\lambda \omega_0 \sigma^2 + \frac{g_{BV_1} \cos^2 \theta_N + g_{BV_2} \sin^2 \theta_N}{2} \left(\langle p^{\dagger} p \rangle_F + \langle n^{\dagger} n \rangle_F \right)$$

$$= 0$$

 $g_{BV} \equiv g_{BV1} \cos^2 \theta_N + g_{BV2} \sin^2 \theta_N$: Free Parameter!