SU(3) chiral linear σ model
for positive and negative parity baryons in dense matter

A. Ohnishi, K. Naito (Hokkaido Univ.)

* Introduction: Hyperons in Dense Matter
* $\mathbf{S U}(3)$ Chiral sigma model with baryons
* Application to Symmetric Nuclear Matter
* Summary

Hadronic Matter Phase Diagram

Hyperons in Dense Matter

Hyperons in Neutron Star (cf Talk by Bombaci, Vidana)

Tsuruta-Cameron (66), Langer-Rosen (70), Pand-haripande (71), Itoh(75), Glendenning, Weber-Weigel, Sugahara-Toki, Schaffner-Mishustin, BalbergGal, Baldo et al., Vidana et al., Nishizaki-Yamamoto-Takatsuka, KohnoFujiwara et al., ...

* Hyperons during Supernova Explosion
- Supernova explode in pure 1D hydro, but with v transport shock stalls.
- 3 \%increase of v flux revive shock wave (Janka et al.)
- Hyperons increase explosion energy by around 4 \% (Ishizuka, AO, Sumiyoshi,Yamada, in preparation)

Hyperons play crutial roles in dense matter, such as in neutron stars and supernova explosion.

Hyperon Potentials at High Densities

* Hyperon Potentials at around $\boldsymbol{\rho}_{\mathbf{0}}$

$$
U(\Lambda) \sim-30 \mathrm{MeV}
$$

$U(\Xi) \sim-(14-16) \mathrm{MeV}$ (KEK-E224, BNL-E885, BNL-E906)

$$
U(\Sigma) \sim(-30 \sim+150) \mathrm{MeV} \quad \text { (Noumi / Kohno) }
$$

* Hyperon Potentials at high densities (V. Koch's talk) Exp't Info. : Hyperon flow, $\mathbf{K}^{+} / \boldsymbol{\pi}{ }^{+}$enhancement, Theor. Prediction: Strongly depends on the model (Shinmura's Talk)

```
We need reliable models with smaller number of free parameters and/or derived from the first principle.
\(\rightarrow\) Chiral Symmetry
```


Does Hyperon Potential Help It?

- Rescattering of Resonances/Strings (RQMD)
- Baryon Rich QGP Formation
- High Baryon Density Effect (Associated Prod. of Y)

$$
\text { At } p>4 p_{0} \text {, Hyperon Feels }
$$

More Attractive Potential than N

Nuclear Matter in SU(2) Chiral Linear σ Model

* Chiral Linear σ Model

Good model in describing hadron properties.
Dynamical change of σ condensate
\rightarrow suitable for nuclear matter study

* Problems in Nuclear Matter

Naive model leads to sudden change of condensate, $\quad \sigma \sim f_{\pi} \rightarrow 0$
\rightarrow Dynamical generation of ω meson mass ($\sigma \omega$ coupling)
(J. Boguta, PLB120,34/PLB128,19)

Equation of State is too stiff.
\rightarrow Loop Effects (vacuum renormalization)
(N.K. Gledenning, NPA480,597,
M. Prakash and T. L. Ainsworth, PRC36, 346)

Higher order terms $\left(\boldsymbol{\sigma}^{6}, \boldsymbol{\sigma}^{8}\right)$
(P.K. Sahu and AO, PTP104,1163)

> Can we soften the EOS with Hyperons?

SU(3) Chiral Linear σ Model with Baryons

BBM coupling in SU(2) chiral linear σ model

* Hadron transformation

Baryons: fundamental repr.

$$
N=\binom{p}{n}, \quad N_{L} \rightarrow L N_{L} \quad, \quad N_{R} \rightarrow R N_{R}
$$

Mesons: Adjoint repr.

$$
M=\Sigma+i \Pi \rightarrow L M R^{+}
$$

* Chiral Invariant Coupling

$$
\begin{gathered}
L_{\text {BBM }}=g\left(N_{L}^{+} M N_{R}+N_{R}^{+} M^{+} N_{L}\right) \\
\rightarrow g\left(N_{L}^{+} L^{+} L M R^{+} R N_{R}+\text { c.c. }\right) \\
\text { How about in SU(3)? }
\end{gathered}
$$

Mesons and Baryons in SU(3)

* Meson Matrix

$$
\boldsymbol{M}=\left(\begin{array}{llll}
\boldsymbol{u} \overline{\boldsymbol{u}} & \boldsymbol{u} \overline{\boldsymbol{d}} & \boldsymbol{u} \overline{\boldsymbol{s}} \\
\boldsymbol{d} \overline{\boldsymbol{u}} & \boldsymbol{d} \overline{\boldsymbol{d}} & \boldsymbol{d} \overline{\boldsymbol{s}} \\
\boldsymbol{s} \overline{\boldsymbol{s}} & \boldsymbol{s} \overline{\boldsymbol{d}} & \boldsymbol{s} \overline{\boldsymbol{s}}
\end{array}\right) \quad \boldsymbol{M}_{P S}=\Pi=\left(\begin{array}{cccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}+\frac{\eta^{\prime}}{\sqrt{3}} & \pi^{+} & \boldsymbol{K}^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}+\frac{\eta^{\prime}}{\sqrt{3}} & \boldsymbol{K}^{0} \\
\boldsymbol{K}^{-} & \overline{\boldsymbol{K}}^{0} & -\frac{2 \eta}{\sqrt{6}}+\frac{\eta^{\prime}}{\sqrt{3}}
\end{array}\right)
$$

* Baryon Matrix

$$
\Psi=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & n \\
\Xi^{-} & \Xi^{0} & -\frac{2 \Lambda}{\sqrt{6}}
\end{array}\right)
$$

BBM Coupling in SU(3) Chiral Linear sigma

Model

* Mesons: Transforms as in SU(2)

$$
\boldsymbol{M}=\Sigma+\boldsymbol{i} \Pi \rightarrow \boldsymbol{L} \boldsymbol{M} \boldsymbol{R}^{+}
$$

* Baryons: Two kind of transformations are proposed
- Type 1: Stokes-Rijken '97, Gasiolowiz-Geffen 60's

$$
\Psi_{L}^{(1)} \rightarrow \boldsymbol{L} \Psi_{L}^{(\mathbf{1})} L^{+} \quad, \quad \Psi_{R}^{(\mathbf{1})} \rightarrow \boldsymbol{R} \Psi_{R}^{(\mathbf{1})} \boldsymbol{R}^{+}
$$

Lowest order chiral invariant coupling $=$ BMBM
$\operatorname{Tr}\left(\bar{\Psi}_{L}^{(1)} M \Psi_{R}^{(1)} \boldsymbol{M}^{+}\right) \rightarrow \operatorname{Tr}\left(\boldsymbol{L} \bar{\Psi}_{L}^{(1)} \boldsymbol{L}^{+} \boldsymbol{L} \boldsymbol{M} \boldsymbol{R}^{+} \boldsymbol{R} \Psi_{R}^{(1)} \boldsymbol{R}^{+} \boldsymbol{R} M^{+} L^{+}\right)$

- Type 2: Papazoglou et., 98

$$
\Psi_{L}^{(2)} \rightarrow \boldsymbol{L} \Psi_{L}^{(2)} \boldsymbol{R}^{+} \quad, \quad \Psi_{R}^{(2)} \rightarrow \boldsymbol{R} \Psi_{R}^{(2)} \boldsymbol{L}^{+}
$$

Lowest order chiral invariant coupling = D-type coupling
$\operatorname{Det}^{\prime} \quad\left(\bar{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right) \equiv \epsilon_{i j k} \epsilon_{l m n} \bar{\Psi}_{R i l}^{(2)} M_{j m} \Psi_{k n}^{(2)} \rightarrow|R||L| \operatorname{Det}^{\prime} \quad\left(\bar{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right)$

Relation to Quark Field

* Spin half 3 quark field

Positive Parity, Having NR Limit (8 states)

$$
B_{d c}^{(1)}=N^{-3}\left(q_{i, a}^{T} C \gamma_{5} q_{j, b}\right) q_{k, d} \epsilon_{i j k} \epsilon_{a b c}
$$

Negative Parity, No NR Limit (9 states)

$$
B_{d c}^{(2)}=N^{-3}\left(q_{i, a}^{T} C q_{j, b}\right) q_{k, d} \epsilon_{i j k} \epsilon_{a b c}
$$

(ijk: color, abcd: flavor)

* Transformation properties

$$
\begin{aligned}
& \Psi^{(1)} \equiv\left(B^{(1)}+\gamma_{5} B^{(2)}\right) / \sqrt{2}, \quad \Psi^{(2)} \equiv\left(B^{(1)}-\gamma_{5} B^{(2)}\right) / \sqrt{2} \\
& \Psi_{L}^{(1)} \rightarrow L \Psi_{L}^{(1)} L^{+}, \quad \Psi_{R}^{(1)} \rightarrow R \Psi_{R}^{(1)} R^{+} \\
& \Psi_{L}^{(2)} \rightarrow L \Psi_{L}^{(2)} R^{+}, \quad \Psi_{R}^{(2)} \rightarrow R \Psi_{R}^{(2)} L^{+}
\end{aligned}
$$

SU(3) Chiral Invariant BBM Coupling

* Trace type coupling (G.A. Christos, Phys. Rev. D35 (1987), 330).

Another Type: $\quad \operatorname{Tr}\left(\bar{\Psi}_{L}^{(1)} M \Psi_{R}^{(2)}\right) \rightarrow \operatorname{Tr}\left(L \bar{\Psi}_{L}^{(1)} L^{+} L M R^{+} R \Psi_{R}^{(2)} L^{+}\right)$

$$
\begin{aligned}
-L_{B M}^{T r} & =\frac{g_{t r}}{\sqrt{2}} \operatorname{Tr}\left(\bar{\Psi}_{L}^{(1)} M \Psi_{R}^{(2)}+\bar{\Psi}_{R}^{(1)} M^{+} \Psi_{L}^{(2)}\right)+\text { h.c. } \\
& =g_{t r}\left(d_{a b c}+\text { if }_{a b c}\right)\left(\bar{\psi}^{l a} \boldsymbol{m}^{b} \psi^{2 c}+\text { h.c. }^{2}\right)
\end{aligned}
$$

* Determinant type Coupling (Papazoglou et. al. PRC57 (1998) 2576)

$$
\begin{aligned}
-L_{B M}^{D e t}= & \sqrt{2} g^{d e t}\left(\operatorname{Det}^{\prime}\left(\bar{\Psi}_{R}^{(2)}, M, \Psi_{L}^{(2)}\right)+\text { h.c. }\right) \\
& =2 g_{d e t} d^{\prime}{ }_{a b c} \bar{\Psi}^{2 a} m^{+b} \psi^{2 c} \\
& \left(m^{a} \equiv \sigma^{a}+i \gamma_{5} \pi^{a}\right)
\end{aligned}
$$

In order to have both of D and F type $B B M$ Coupling, We need two types of baryons!

* Mean Field Approx. + Diagonalization

Explicit Breaking term

$$
\begin{aligned}
-L_{B M}^{M F} & =\sum_{i}\left(\begin{array}{ll}
\bar{\psi}_{i}^{1} & \bar{\psi}_{i}^{2}
\end{array}\right)\left(\begin{array}{ll}
0 & g_{t r} \sigma_{i}+\boldsymbol{n}_{i}^{s} \boldsymbol{m} \\
g_{t r} \sigma_{i}+\boldsymbol{n}_{i}^{s} \boldsymbol{m}_{s} & -\boldsymbol{g}_{d e t} \sigma_{i}^{\prime}
\end{array}\right)\binom{\psi_{i}^{1}}{\psi_{i}^{2}} \\
& =\sum_{i}\left(\begin{array}{ll}
\bar{\psi}_{i}^{[+]} & -\bar{\psi}_{i}^{[-]}
\end{array}\right)\left(\begin{array}{cc}
M_{i}^{[+]} & 0 \\
0 & -M_{i}^{[-]}
\end{array}\right)\binom{\psi_{i}^{[+]}}{\psi_{i}^{[-]}}
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{i} \equiv \sqrt{\frac{2}{3}}\left(\sigma_{0}+a_{i} \sigma_{8}\right), \quad \sigma_{i}^{\prime} \equiv \sqrt{\frac{2}{3}}\left(\sigma_{0}+\boldsymbol{b}_{i} \sigma_{8}\right) \\
\binom{\psi_{i}^{1}}{\psi_{i}^{2}}=\left(\begin{array}{cc}
\cos \theta_{i} & -\sin \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i}
\end{array}\right)\binom{\psi_{i}^{[+]}}{\gamma_{5} \psi_{i}^{[-]}}
\end{gathered}
$$

* Positive and Negative Parity Octet Baryon Masses

$$
M_{i}^{[\pm]}=\sqrt{\left|g_{t r} \sigma_{i}+n_{i}^{s} m_{s}\right|^{2}+\left(g_{d e t} \sigma_{i}^{\prime} / 2\right)^{2}} \pm g_{d e t} \sigma_{i}^{\prime} / 2
$$

Four Free Purameters < Numbers of Baryon Masses to be fitted

Baryon Mass Spectrum

Positive and Negative Spin-half Baryon Masses are well reproduced except for Λ (1405)

Meson Lagrangian: Standard

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \operatorname{tr}\left[\partial_{\mu} M \partial^{\mu} M^{\dagger}\right]-\frac{1}{2} \mu^{2} \operatorname{tr}\left[M M^{\dagger}\right] \\
& -\lambda \operatorname{tr}\left[M M^{\dagger} M M^{\dagger}\right]-\lambda^{\prime} \operatorname{tr}\left[M M^{\dagger}\right]^{2}+c\left(\operatorname{det} M+\operatorname{det} M^{\dagger}\right) \\
& +\frac{\sqrt{3} D}{4}\left\{\operatorname{tr}\left[M M^{\dagger} \lambda^{8}\right]+\operatorname{tr}\left[M \lambda^{8} M^{\dagger}\right]\right\}+c_{\sigma} \sigma+c_{\zeta} \zeta
\end{aligned}
$$

Kinetic + Second order + Fourth order + Det. Int. + Explicit breaking

Seven Free Parameters
Fitting 2 Decay constants (π and \mathbb{K}) and 4 Meson musses (π, K, η, a_{0})
\rightarrow One parameter $=\sigma \quad$ Mass

Application to Symmetric Nuclear Matter

Mean Field Lagrangian

$$
\begin{aligned}
\boldsymbol{L}^{M F}= & \frac{\mu^{2}}{\mathbf{2}} \\
& \left(\sigma^{2}+\zeta^{2}\right)-\frac{\lambda}{\mathbf{4}}\left(\sigma^{2}+\zeta^{2}\right)^{2}-\frac{\lambda^{\prime}}{\mathbf{4}}\left(\sigma^{4}+\mathbf{2} \zeta^{4}\right)+\boldsymbol{c} \sigma^{2} \zeta \\
& -\nu \zeta^{2}+\boldsymbol{H}_{\sigma} \sigma+\boldsymbol{H}_{\zeta} \zeta \\
& +\sum_{i}\left(\sum_{k=1,2} \bar{\psi}_{i}^{k} \boldsymbol{i} \partial_{\mu} \gamma^{\mu} \psi_{i}^{k}\right) \\
& +\sum_{i}\left[\boldsymbol{g}_{t r}\left(\bar{\psi}_{i}^{1} \psi_{i}^{2}+\bar{\psi}_{i}^{2}+\psi_{i}^{1}\right)\left(\sigma_{i}+\boldsymbol{n}_{i}^{s} \boldsymbol{m}_{s}\right)-\boldsymbol{g}_{d e t} \bar{\psi}_{i}^{2} \psi_{i}^{2} \sigma^{\prime}{ }_{i}\right]
\end{aligned}
$$

* Equation of Motion

$$
\frac{\partial \boldsymbol{L}}{\partial \sigma}=\mu^{2} \sigma-\lambda\left(\sigma^{2}+\zeta^{2}\right) \sigma-\lambda \lambda^{\prime} \sigma^{3}+2 \boldsymbol{c} \sigma \zeta+\boldsymbol{H}_{\sigma}-\boldsymbol{g}_{\sigma}^{[+]} \rho_{s}
$$

In Symmetric Nuclear Matter,

$$
\boldsymbol{g}_{\sigma}^{[+]}=\mathbf{2} \boldsymbol{g}_{t r} \sin \theta_{N} \cos \theta_{N}-\boldsymbol{g}_{d e t} \cos \theta_{N}^{2}
$$

Free Energy (1): without $\sigma \omega$ Coupling

Sudden Chage of σ Value \rightarrow Chiral Phase Transition below p_{0}

Mean Field Lagrangian

$$
\begin{aligned}
\boldsymbol{L}^{M F}= & \frac{\mu^{2}}{\mathbf{2}}\left(\sigma^{2}+\zeta^{2}\right)-\frac{\lambda}{4}\left(\sigma^{2}+\zeta^{2}\right)^{2}-\frac{\lambda^{\prime}}{4}\left(\sigma^{4}+\mathbf{2} \zeta^{4}\right)+\boldsymbol{c} \sigma^{2} \zeta \\
& -v \zeta^{2}+\boldsymbol{H}_{\sigma} \sigma+\boldsymbol{H}_{\zeta} \zeta \\
& +\sum_{i}\left(\sum_{k=1,2} \bar{\psi}_{i}^{k} \boldsymbol{i} \partial_{\mu} \gamma^{\mu} \psi_{i}^{k}\right) \\
& +\sum_{i}\left[\boldsymbol{g}_{t r}\left(\bar{\psi}_{i}^{1} \psi_{i}^{2}+\bar{\psi}_{i}^{2}+\psi_{i}^{1}\right)\left(\sigma_{i}+\boldsymbol{n}_{i}^{s} \boldsymbol{m}_{s}\right)-\boldsymbol{g}_{d e t} \bar{\psi}_{i}^{2} \psi_{i}^{2} \sigma_{i}^{\prime}\right] \\
& -g_{V B} \omega \rho_{B}+\lambda_{V S} \sigma^{2} \omega^{2} / 2
\end{aligned}
$$

* Equation of Motion

$$
\frac{\partial \boldsymbol{L}}{\partial \sigma}=\mu^{2} \sigma-\lambda\left(\sigma^{2}+\zeta^{2}\right) \sigma-\lambda^{\prime} \sigma^{3}+2 c \sigma \zeta+\boldsymbol{H}_{\sigma}-\boldsymbol{g}_{\sigma}^{[+]} \rho_{s}+\lambda_{V S} \sigma \omega^{2}=\mathbf{0}
$$

$$
\begin{align*}
\frac{\partial \boldsymbol{L}}{\partial \omega}=-g_{V B} \rho_{B}+\lambda_{V S} \sigma^{2} \omega=0 & \rightarrow \omega=g_{V B} \rho_{B} / \lambda_{V S} \sigma^{2} \\
m_{\omega}^{2}=\lambda_{V S} \sigma^{2} & =782 \mathrm{MeV} \quad \text { (Boguta) } \tag{Boguta}
\end{align*}
$$

Hyp2003, J-Lab, Oct. 14-18, 2003
Free Energy (2): with $\sigma \omega$ Coupling

Smooth Chage of σ Value / Only One Local Minima \rightarrow Stability of Normal Vacuum

Equation of State (1): $M_{\sigma}=600 \mathrm{MeV}$

Equation of State (2): $M_{\sigma}=800 \mathrm{MeV}$

We can fit p_{0} and E / A by adjusting $g_{B V}$ and M_{σ} but EOS becomes too stifff.

Summary

* An SU(3) chiral sigma model with baryons is presented. Two types of transformation, B(1) and B(2) (Christos) Two types of Lowest order BBM coupling
(Christos / Papazoglou et. al.)
Explicit breaking term (Strange quark mass) \rightarrow Octet Baryon Mass Meson Lagrangian : Standard

Positive and Negative parity baryons are necessarily couple in constructing the lowest order chirally invariant Lagrangian having D as well as F coupling.

* This model is applied to symmetric nuclear matter. Coupling of $\boldsymbol{\sigma} \omega$:

Dynamical generation of vector meson mass (Boguta)
BV coupling:
Repulsive NN interaction
EOS $=$ Too Stififf !
One problem in SU(2) model is not solved yet !

Problems and Future Directions

* How can we make EOS softer?
"Classical" Interaction BMBM
Loop (Gledenning / Prakash-Ainsworth)
Higher order terms (Sahu-AO)
Dilatation Field (Papazoglou et. al.)
Vector Realization (Sasaki-Harada)
Non-Linear Realization
* How does the model predict Hyperon Potentials in Dense Matter ?
* Behavior of Negative Parity Baryons in Nuclear Matter
* F/D Ratio in Pseudoscalar BB coupling $=1.6$!
(\leftarrow emprically $0.5-0.7$)
* Perturbative contribution to condensate in baryon and meson sectors.

Hyp2003, J-Lab, Oct. 14-18, 2003

$$
\begin{aligned}
& T^{1}=\left(B^{1}+\gamma_{S} B^{2}\right) / \sqrt{2} \quad: \quad T_{L}^{1} \rightarrow L T_{L}^{1} L^{\dagger}, \quad T_{R}^{1} \rightarrow R T_{R}^{1} R^{\dagger}, \\
& \Psi^{2}=\left(B^{1}-\gamma_{S} B^{2}\right) / \sqrt{2} \quad: \quad \Psi_{L}^{2} \rightarrow L \mathbb{V}_{L}^{2} R^{\dagger}, \quad \Psi_{R}^{2} \rightarrow R \mathbb{T}_{R}^{2} L^{\dagger},
\end{aligned}
$$

$$
\begin{aligned}
d_{a b c}^{\prime} & \equiv \frac{1}{4} \epsilon_{i j k} \epsilon_{l n n} \lambda_{i l}^{a} \lambda_{j m}^{b} \lambda_{k n}^{c} \\
& =d_{a b c}-\frac{\sqrt{6}}{2}\left[\delta_{a 0} \delta_{b c}+\delta_{b 0} \delta_{c a}+\delta_{c 0} \delta_{a b}-3 \delta_{a 0} \delta_{b 0} \delta_{c 0}\right]
\end{aligned}
$$

Isoscalar Vector Meson ©

Dynamical generation of ω mass: $\boldsymbol{\sigma} \omega$ Coupling

$$
m_{\omega}^{2}=\lambda_{V S} \sigma^{2} \quad \mathbf{7 8 2} \mathbf{~ M e V}
$$

Coupling to Baryon: Repulsive BB interaction

$$
\begin{aligned}
& \quad g_{B V_{1}}\left\{\operatorname{tr}\left[\bar{\Psi}_{L}^{1} l_{\mu} \gamma^{\mu} \Psi_{L}^{1}\right]+\operatorname{tr}\left[\bar{\Psi}_{R}^{1} r_{\mu} \gamma^{\mu} \Psi_{R}^{1}\right]\right\} \\
& +g_{B V_{2}}\left\{\operatorname{tr}\left[\bar{\Psi}_{L}^{2} l_{\mu} \gamma^{\mu} \Psi_{L}^{2}\right]+\operatorname{tr}\left[\bar{\Psi}_{R}^{2} r_{\mu} \gamma^{\mu} \Psi_{R}^{2}\right]\right\} \\
& \lambda \omega_{0} \sigma^{2}+\frac{g_{B V_{1}} \cos ^{2} \theta_{N}+g_{B V_{2}} \sin ^{2} \theta_{N}}{2}\left(\left\langle p^{\dagger} p\right\rangle_{F}+\left\langle n^{\dagger} n\right\rangle_{F}\right) \\
& =
\end{aligned}
$$

$$
g_{B V} \equiv g_{B V} \cos ^{2} \theta_{N}+g_{B V} \sin ^{2} \theta_{N}: \text { Free Parameter ! }
$$

