17th. Oct. 2003 HYP2003

Direct measurement of the π^0 decay width of ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C hypernuclei

For ${}^{5}_{\Lambda}$ He and ${}^{12}_{\Lambda}$ C

• Direct measurement of π^0 decay width

Non-mesonic decay width

Titech S.Okada for KEK-PS E462/E508 collaboration

Motivation

Weak decay mode of Λ hypernucleus

reported in previous talk (by Kameoka)

Present status of Γ_{nm}

$$\Gamma_{\rm nm} = \Gamma_{\rm tot} - \Gamma \pi^- - \Gamma \pi^0$$

	⁵ _Λ He error		¹² _A C error	
$\Gamma_{ m tot}$ / Γ_{Λ}	1.03 ± 0.08	8%	1.141 ± 0.08	7%
$\Gamma \pi$ -/ Γ_{Λ}	0.44 ± 0.11	25%	0.113 ± 0.015	13%
$\Gamma \pi^0 / \Gamma_{\Lambda}$	0.18 ± 0.20	111%	0.200 ± 0.068	<mark>34</mark> %
Γ_{nm} / Γ_{Λ}	0.41 ± 0.14	34%	0.828 ± 0.087	11%

(J.J.Szymanski *et al.* : PRC43) (Y.Sato *et al.* : PRC submitted)

 $\Gamma \pi^0$: indirect measurement

 \square Γ_{π^0} is the largest error source of Γ_{nm} .

Present status of $\Gamma \pi^{o}$

Pionic decay width of ${}^{5}_{\Lambda}$ He is sensitive to α - Λ potential shape.

ORG : No repulsive core YNG : having repulsive core

We have measured the $\Gamma \pi^0$ of ${}^5_\Lambda$ He and ${}^{12}_\Lambda$ C within ~5% error level.

For observing π^0 particle,

π^0 identification

γ efficiency estimation using GEANT simulation

 * Blue histogram : GEANT simulation
 * Plot (with error bar) : Experimental data

assuming π^0 momentum in GEANT simulation as ${}^5_{\Lambda}$ He : 104.9 MeV (mono) ${}^{12}_{\Lambda}$ C : Motoba's calculation PTP117(1994)

Well agree with Geant simulation.

Nuclear γ is shown only Mul \geq 1. To remove it completely, we apply Mul \geq 2 and ADCsum \geq 20MeVee .

π^0 branching ratio of 5_A He

Mass spectra for ⁶Li(π^+ ,K⁺)

ADC sum w/GEANT sim

π^0 branching ratio of ${}^{12}{}_{\Lambda}C$

ADC sum w/GEANT sim

$b_{\pi^0} = N (w/\gamma) / N (inc) \times eff$ = 0.133 ± 0.005

This error level is improved extremely (~5% error level) !!

This $\Gamma \pi^0$ result is also shown the middle of YNG and ORG as our result of $\Gamma \pi^-$.

The result is higher than some of theoretical predictions.

Results of Γ nm

- $\bullet \pi^0$ branching ratio
 - ✓ ${}^{5}_{\Lambda}$ He : Direct measurement for the first time.
 - \checkmark ¹² $_{\Lambda}$ **C** : measured with high statistics.
 - π^0 decay width
 - > ${}^{5}_{\Lambda}$ He : between YNG and ORG (α - Λ potential).
 - $> {}^{12}{}_{\Lambda}C$: higher than most of theoretical calc.

 $\Gamma \pi^{0} / \Gamma_{\Lambda} = 0.201 \pm 0.011 ({}^{5}_{\Lambda} \text{He}), \ 0.165 \pm 0.008 ({}^{12}_{\Lambda} \text{C})$

Furthermore, we extracted non-mesonic weak decay width from these results.

 $\Gamma_{nm}/\Gamma_{\Lambda} = 0.395 \pm 0.016 ({}^{5}_{\Lambda}He), 0.953 \pm 0.032 ({}^{12}_{\Lambda}C)$

These results will contribute more theoretical understanding for α - Λ potential shape and also the study of NMWD.

Spare OHPs

For generated π^0 momentum in Geant simulation for ${}^{12}{}_{\Lambda}$ C,

Assuming this ratio pattern for 1⁻: $b_{\pi^0} = 0.133 \pm 0.005$ (final result) Case of coming from only 0⁺ : $b_{\pi^0} = 0.135 \pm 0.005$ (systematic error: ~1.5%)

Mass spectra gate dependence of π^0 branching ratio

systematic error : ~ 1% (average)

Stability for absolute gain adjustment

 Decrease absolute gain 5% : $b_{\pi^0} = 0.209 \pm 0.008$

 Final result :
 $b_{\pi^0} = 0.212 \pm 0.008$

 Increase absolute gain 5% : $b_{\pi^0} = 0.216 \pm 0.008$

 (For changing gain 5%) : systematic error= ~1.7%

