2003.10.14 HYP2003 (JLAB)

Hypernuclear Weak Decay experiments at KEK: n-n and n-p Coincidence Measurements

KEK-PS E462/E508 collaboration H.Outa (RIKEN)

KEK-PS E462/508 collaboration

KEK, RIKEN, Seoul Univ., GSI, Tohoku Univ., Osaka Univ., Univ. Tokyo Osaka Elec. Comm. Univ.^G, Tokyo Inst. Tech.

S. Ajimura, K. Aoki, A. Banu, H. Bhang, T. Fukuda,
O. Hashimoto, J. I. Hwang, S. Kameoka, B. H. Kang,
E. H. Kim, J. H. Kim, M. J. Kim, T. Maruta, Y. Miura,
Y. Miyake, T. Nagae, M. Nakamura, S. N. Nakamura,
H. Noumi, S. Okada, Y. Okatasu, H. Outa, H. Park,
P. K. Saha, Y. Sato, M. Sekimoto, T. Takahashi,
H. Tamura, K. Tanida, A. Toyoda, K.Tsukada,
T. Watanabe, H. J. Yim

Hypernuclear weak decay measurements for ${}^{5}_{\Lambda}$ He and ${}^{12}_{\Lambda}$ C with ~ 10 times more statistics

- n+n/n+p coincidence measurement
 - → Energy/Opening angle correlation

 $\Gamma n/\Gamma p ({}^{5}_{\Lambda}He) = 0.44 \pm 0.11 \pm 0.03$

High accuracy measurements of Γπ/Γnm

 $\Gamma nm = 1/T^{*} (1 - Br(\pi^{-}) - Br(\pi^{0}))$

 \rightarrow Overlap of \wedge - α in ${}^{5}_{\wedge}$ He found to be large

1. np/nn double coincidence detection from ${}^{5}_{\Lambda}$ He & ${}^{12}_{\Lambda}$ C

$$\begin{array}{l} & \Gamma_p & (\Lambda + p \rightarrow n + p) \\ & \Gamma_n & (\Lambda + n \rightarrow n + n) \end{array} \end{array}$$

Γ_n/Γ_p ratio (theoretical & experimental results)

Difficulty in previous experiment

1. Cn from subtraction

N_n/N_{nmwd}

- → missing process $\Gamma n/\Gamma p$ ↑
- 2. Directly affected by the FSI loss/ Γ_{2N}
- **3. Large error of Br(NMWD) from** large Br(π⁰) error
- 1. Measure neutron to obtain the number ratio at the "same" energy threshold
- N_n/N_p → Γn/Γp less affected by FSI only in 2nd order; n/p→p/n influx term (Talk by Bhang)
- 3. Analysis requires assumption of
 - $\Gamma_{2N} \sim 0 \rightarrow$ Is this correct??

Select ∕N→NN events without ∕NN→NNN & FSI effect

Core-acceptance cut (for p)

Particle identification

Neutral particle

Charged particle

n+p Energy Sum .vs. cosθ_{np}

n + **p** pair from ${}^{5}_{\Lambda}$ He

Mass spectra for ⁶Li(π^+ ,K⁺)

Mass spectra for ${}^{12}C(\pi^+, K^+)$

coincidence analysis for ⁵, He

coincidence analysis for ¹²,^C

Estimation of N(n+p), N(n+n)

Angular correlation $cos(\theta)$

Comparison with theoretical calc. for angular correlation

Results of Γ n / Γ p

Compare w/ Garbarino's calc.

Gross feature are well explained but.....

- **1. No peaking** in single neutron energy spectrum even from ${}^{5}_{\Lambda}$ He
- 2. Both of nn/pp-pair numbers/NMWD are lower especially for ¹² ^{\Lambda}C

Suggesting <u>larger</u> FSI/C2N

- Smaller contribution in cosθ ~ 0 region
- 4. p+p emission rate is ~ 1/10

► Suggesting smaller FSI/Γ2N

Summary of NMWD results:

- * Γ_n / Γ_p ratio: Nnn/Nnp at $\cos\theta < -0.8$; E>30MeV ${}^5_{\Lambda}$ He (E462) ~ 0.44±0.11±0.03 \rightarrow Consistent w/ recent theory
- * Angular & Energy correlation
 Contribution of ∧NN →NNN ??
 → Still open question..
- * Asymmetry parameter results (~0)
 [Maruta's parallel talk]
 → Hard to be explained by theory

WHY

WHY

2. Accurate measurement of $\Gamma\pi^{-}$, $\Gamma\pi^{0}$ and Γnm

For detail; parallel talks by Kameoka/Okada

Γπ: test of Λ-nucleus potential

Y-nucleus potential

Γπ/Γnm and Λ-Nucleus Potential

 $\int \frac{\psi_N^2}{\rho_0} \cdot \psi_\Lambda^2 d\vec{r} ?? \qquad \begin{array}{l} \text{YNG: } 20\% \text{ overlap} \\ \text{ORG: } 40\% \text{ overlap} \end{array}$

Mesonic decay rate

Γπ(**YNG**) > Γπ(**ORG**)

Non-mesonic decay rate $\Gamma_{nm} \propto \int \frac{\psi_{N}^{2}}{\rho_{0}} \cdot \psi_{\Lambda}^{2} d\vec{r} \quad ??$

Fnm(ORG) < Fnm(YNG)</pre>

A Wave Function $0.5 \quad ORG \quad YNG \quad \int_{\Lambda}^{5} He$ $\sqrt{\langle r^2 \rangle_{\alpha}} \quad \sqrt{\langle r^2 \rangle_{\alpha}}$

π^0 branching ratio of 5_A He **Okada**

Mass spectra for ⁶Li(π^+ ,K⁺)

ADC sum w/ Geant sim

 ${}^{5}_{\Lambda}$ He : b π^{-} / b π^{0} = 1.75±0.08 (b π^{-} : 0.371±0.009) referring previous talk

Same Q-value as that of free Λ Free Λ : $b\pi^-$ / $b\pi^0 = 1.78 \pm 0.03$

Non-mesonic deca rate ${}^{5}_{A}$ He and ${}^{12}_{A}$ C

Mass number dependence of $\Gamma_{\rm NM}$

Parallel	<u> E462/508</u>
Maruta	Asymmetry of proton from the NMWD of ${}^{5}_{\Lambda}$ He and ${}^{12}_{\Lambda}$ C, ${}^{11}_{\Lambda}$ B
Kameoka ^{π⁻ decay branching ratio of ⁵[,]He Lifetime analysis for ⁵[,]He, ¹²[,]C}	
Okada	π^0 decay branching ratio of ${}^5_{\Lambda}He, {}^{12}_{\Lambda}C$
Posters	NMWD rate of ${}^{5}_{\Lambda}$ He, ${}^{12}_{\Lambda}$ C
Okada	Single nucleon spectra from ⁵ ^A He, ¹² ^C Nn/Np ratio from NMWD of ⁵ ^A He, ¹² ^C
Kang	n+p and n+n coincidence for ⁵ He Fn/Fp ratio
Kim	$n+p$ and $n+n$ coincidence for ${}^{12}_{\Lambda}C$

Summary table (preliminary)

- Width unit : Γ_{Λ}
- Total decay width Γnm Nn/Np(@50MeV)
- Nnn/Nnp b-to-b αnm

- 0.947±0.038 1.242 0.395±0.016 0.953
- 2.20±0.13±0.15
- $0.44 \pm 0.11 \pm 0.03$
 - 0.07±0.08
 - 0.351±0.017
 - 0.201±0.011 0.

12 C

- 0.953 ± 0.032
- 1.80±0.07±0.12 in analysis
 - 0.24±0.26
- $({}^{12}_{\Lambda}C \text{ and } {}^{11}_{\Lambda}B)$
 - in analysis
 - 0.165±0.008

e 2 ~ 20 times more accurate ous measurements