An EFT for the weak ΛN **interaction**

Assumpta Parreño, Comelius Bennhold, Barry R. Holstein Dept. ECM, Universitat de Barcelona, Barcelona, Spain George Washington University, Washington DC, USA University of Massachusetts, USA

Motivation

Is it possible to build a model independent theory for the $|\Delta S| = 1 \Lambda N$ interaction?

Motivation

- Is it possible to build a model independent theory for the $|\Delta S| = 1 \Lambda N$ interaction?
- Can a low order EFT describe the present available data for $\Lambda N \rightarrow NN$ (hypernuclear decay data)?

Motivation

- Is it possible to build a model independent theory for the $|\Delta S| = 1 \Lambda N$ interaction?
- Can a low order EFT describe the present available data for $\Lambda N \rightarrow NN$ (hypernuclear decay data)?
- Is this a valid scenario to learn something new on the $|\Delta S| = 1$ interaction?
 - $\Delta I = 3/2$ transitions?
 - SU(3) breaking?

Work partially supported by: DGICYT BFM2002–01868 (Spain) DOE DE-FG02-95ER-40907 (US) HPRN-CT-2002-00311 (EU) SGR2001–64 (Catalunya) NSF PHY-02-44801 (US)

Hypernuclear lifetimes — Decay rates

Fair agreement for the NMD rates

Hypernuclear lifetimes — Decay rates

Fair agreement for the NMD rates

Hypernuclear lifetimes — Decay rates

Fair agreement for the NMD rates

Hypernuclear lifetimes – Decay rates

Fair agreement for the NMD rates

Hypernuclear lifetimes – Decay rates

 $A_{\Lambda}Z \rightarrow NN + (A-2)Z'$

neutron-to-proton ratio

$$\frac{nn}{np} \neq \frac{\Gamma_n}{\Gamma_p} = \frac{\Lambda n \to nn}{\Lambda p \to np}$$
 (FSI)

neutron-to-proton ratio

Experiment and theory getting closer

neutron-to-proton ratio

Experiment and theory getting closer Study of double coincidence observables: KEK-E462 (H. Outa's talk)

Theory: G. Garbarino's talk, Garbarino, Parreño, Ramos, PRL 91 112501 (2003)

Parity Violating Asymmetry, A

KEK $n(\pi^+, K^+)\Lambda$ $p_{\pi} = 1.05 \text{GeV}$ $2^{\circ} \le \phi_K \le 15^{\circ}$

Parity Violating Asymmetry, A

KEK $n(\pi^+, K^+)\Lambda$ $p_{\pi} = 1.05 \text{GeV}$ $2^{\circ} \le \phi_K \le 15^{\circ}$

- Effective Field Theories based in chiral expansions
 - Remarkable success in the SU(2) sector

- Effective Field Theories based in chiral expansions
 - Remarkable success in the SU(2) sector
 - Idea: allow for all possible contact terms in the 4-fermion interaction Lagrangian (model independent)

- Effective Field Theories based in chiral expansions
 - Remarkable success in the SU(2) sector
 - Idea: allow for all possible contact terms in the 4-fermion interaction Lagrangian (model independent)
 - Leads to a finite number of "Low Energy Coefficients" (LEC) of order $n \Rightarrow C_n \mathcal{O}((\frac{p}{M})^n)$

LEC's fitted to experimental data \Rightarrow Systematic, stable (convergent) expansion

- Effective Field Theories based in chiral expansions
 - Remarkable success in the SU(2) sector
 - Idea: allow for all possible contact terms in the 4-fermion interaction Lagrangian (model independent)
 - Leads to a finite number of "Low Energy Coefficients" (LEC) of order n $\Rightarrow C_n \mathcal{O}((\frac{p}{M})^n)$

- \Rightarrow Systematic, stable (convergent) expansion
- Successful extension to SU(3)?
 B. Borasoy's talk on friday

- Effective Field Theories based in chiral expansions
 - Remarkable success in the SU(2) sector
 - Idea: allow for all possible contact terms in the 4-fermion interaction Lagrangian (model independent)
 - Leads to a finite number of "Low Energy Coefficients" (LEC) of order n $\Rightarrow C_n \mathcal{O}((\frac{p}{M})^n)$

- \Rightarrow Systematic, stable (convergent) expansion
- Successful extension to SU(3)?
 B. Borasoy's talk on friday
 - Significant degree of SU(3) breaking.

- Effective Field Theories based in chiral expansions
 - Remarkable success in the SU(2) sector
 - Idea: allow for all possible contact terms in the 4-fermion interaction Lagrangian (model independent)
 - Leads to a finite number of "Low Energy Coefficients" (LEC) of order n $\Rightarrow C_n \mathcal{O}((\frac{p}{M})^n)$

- \Rightarrow Systematic, stable (convergent) expansion
- Successful extension to SU(3)?
 B. Borasoy's talk on friday
 - Significant degree of SU(3) breaking.
 - Problems facing SU(3) χ PT: weak PC $Y \rightarrow N\pi$ amplitudes

- Effective Field Theories based in chiral expansions
 - Remarkable success in the SU(2) sector
 - Idea: allow for all possible contact terms in the 4-fermion interaction Lagrangian (model independent)
 - Leads to a finite number of "Low Energy Coefficients" (LEC) of order $n \Rightarrow C_n \mathcal{O}((\frac{p}{M})^n)$

- \Rightarrow Systematic, stable (convergent) expansion
- Successful extension to SU(3)?
 B. Borasoy's talk on friday
 - Significant degree of SU(3) breaking.
 - Problems facing SU(3) χ PT: weak PC $Y \rightarrow N\pi$ amplitudes
 - Energy released in $(\Lambda N \rightarrow NN)_{th} \sim 177 \text{ MeV} (|\vec{p}| \sim 417 \text{ MeV/c}) \Longrightarrow$ Successful low-energy expansion?

EFT for the $\Lambda N \to NN$ transition

Incorporate the correct long range behavior. It must be built into the EFT

EFT for the $\Lambda N \rightarrow NN$ transition

Incorporate the correct long range behavior. It must be built into the EFT $\Lambda N \rightarrow NN \Rightarrow \text{ release of } \sim 177 \text{ MeV} (|\vec{p}| \sim 417 \text{ MeV/c}).$ $\longrightarrow \pi (m_{\pi} \approx 138 \text{ MeV}) \text{ and } K (m_{K} \approx 494 \text{ MeV}): \text{ dynamical fields.}$ (supported by SU(3))

EFT for the $\Lambda N \rightarrow NN$ transition

Incorporate the correct long range behavior. It must be built into the EFT $\Lambda N \rightarrow NN \Rightarrow \text{release of} \sim 177 \text{ MeV} (|\vec{p}| \sim 417 \text{ MeV/c}).$ $\longrightarrow \pi (m_{\pi} \approx 138 \text{ MeV}) \text{ and } K (m_{K} \approx 494 \text{ MeV}) \text{: dynamical fields.}$ (supported by SU(3))

Add local correction terms to mimic the effect of excluded momenta

EFT for the $\Lambda N \rightarrow NN$ **transition**

- Incorporate the correct long range behavior. It must be built into the EFT $\Lambda N \rightarrow NN \Rightarrow$ release of ~ 177 MeV ($|\vec{p}| \sim 417$ MeV/c). $\rightarrow \pi (m_{\pi} \approx 138$ MeV) and $K (m_{K} \approx 494$ MeV): dynamical fields. (supported by SU(3))
- Add local correction terms to mimic the effect of excluded momenta
- At leading order: $\pi + K + LO$ contact terms

OPE and OKE potentials

$$\mathcal{L}_{\Lambda N\pi}^{W} = -iG_{F}m_{\pi}^{2}\overline{\psi}_{N}(A_{\pi} + B_{\pi}\gamma_{5}\gamma^{\mu})\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{\Lambda}\begin{pmatrix}0\\1\end{pmatrix}$$
$$\mathcal{L}_{NN\pi}^{S} = -ig_{NN\pi}\overline{\psi}_{N}\gamma_{5}\gamma^{\mu}\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{N}$$
$$W_{OPE}(\vec{q}) = -G_{F}m_{\pi}^{2}\frac{g_{NN\pi}}{2M_{S}}\left(A_{\pi} + \frac{B_{\pi}}{2M_{W}}\vec{\sigma}_{1}\vec{q}\right)\frac{\vec{\sigma}_{2}\vec{q}}{\vec{q}^{2} + \mu_{\pi}^{2}}\vec{\tau}_{1}\vec{\tau}_{2}$$

OPE and OKE potentials

$$\mathcal{L}_{\Lambda N\pi}^{W} = -iG_{F}m_{\pi}^{2}\overline{\psi}_{N}(A_{\pi} + B_{\pi}\gamma_{5}\gamma^{\mu})\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{\Lambda}\begin{pmatrix}0\\1\end{pmatrix}$$
$$\mathcal{L}_{NN\pi}^{S} = -ig_{NN\pi}\overline{\psi}_{N}\gamma_{5}\gamma^{\mu}\vec{\tau}\cdot\partial_{\mu}\vec{\phi}^{\pi}\psi_{N}$$
$$V_{OPE}(\vec{q}) = -G_{F}m_{\pi}^{2}\frac{g_{NN\pi}}{2M_{S}}\left(A_{\pi} + \frac{B_{\pi}}{2M_{W}}\vec{\sigma}_{1}\vec{q}\right)\frac{\vec{\sigma}_{2}\vec{q}}{\vec{q}^{2} + \mu_{\pi}^{2}}\vec{\tau}_{1}\vec{\tau}_{2}$$

$$\mathcal{L}_{_{\mathrm{NNK}}}^{\mathrm{W}} = -\mathrm{i} \, G_F m_{\pi}^2 \left[\overline{\psi}_{\mathrm{N}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left(C_{_{\mathrm{K}}}^{_{\mathrm{PV}}} + C_{_{\mathrm{K}}}^{_{\mathrm{PC}}} \gamma_5 \, \gamma^{\mu} \, \partial_{\mu} \right) (\phi^{\mathrm{K}})^{\dagger} \psi_{\mathrm{N}} \right. \\ \left. + \overline{\psi}_{\mathrm{N}} \psi_{\mathrm{N}} \left(D_{_{\mathrm{K}}}^{_{\mathrm{PV}}} + D_{_{\mathrm{K}}}^{_{\mathrm{PC}}} \gamma_5 \, \gamma^{\mu} \, \partial_{\mu} \right) (\phi^{\mathrm{K}})^{\dagger} \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right) \right]$$

$$\mathcal{L}_{\Lambda NK}^{S} = -i g_{\Lambda NK} \overline{\psi}_{N} \gamma_{5} \gamma^{\mu} \partial_{\mu} \phi^{K} \psi_{\Lambda}$$

$$g_{NN\pi} \to g_{\Lambda NK} , \ \mu_{\pi} \to \mu_{K}$$

$$\mathcal{L}_{\pi} \to \left(\frac{C_{K}^{PV}}{2} + D_{K}^{PV} + \frac{C_{K}^{PV}}{2} \vec{\tau}_{1} \vec{\tau}_{2}\right) \frac{M_{S}}{M_{W}}, \ \hat{B}_{\pi} \to \left(\frac{C_{K}^{PC}}{2} + D_{K}^{PC} + \frac{C_{K}^{PC}}{2} \vec{\tau}_{1} \vec{\tau}_{2}\right)$$

PV $\Lambda N \rightarrow NN$ transitions:

${}^3S_1 \rightarrow {}^3P_1,$

${}^3S_1 \rightarrow {}^3P_1$

 ${}^{3}S_{1} \rightarrow {}^{1}P_{1},$ ${}^{1}S_{0} \rightarrow {}^{3}P_{0},$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A(\sigma_{1} + \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + B(\sigma_{1} + \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ${}^{3}S_{1} \rightarrow {}^{1}P_{1},$ ${}^{1}S_{0} \rightarrow {}^{3}P_{0},$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1} + \sigma_{2}\right)\left\{p_{1} - p_{2}, \, \delta(\vec{r})\right\} + B\left(\sigma_{1} + \sigma_{2}\right)\left[p_{1} - p_{2}, \, \delta(\vec{r})\right]$

 ${}^{3}S_{1} \to {}^{1}P_{1}, \quad C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ${}^{1}S_{0} \to {}^{3}P_{0}, \quad +E i(\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i(\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1} + \sigma_{2}\right)\left\{p_{1} - p_{2}, \, \delta(\vec{r})\right\} + B\left(\sigma_{1} + \sigma_{2}\right)\left[p_{1} - p_{2}, \, \delta(\vec{r})\right]$

³S₁ $\rightarrow^{1} P_{1}$, $C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ¹S₀ $\rightarrow^{3} P_{0}$, $+E i (\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i (\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PC $\Lambda N \rightarrow NN$ transitions:

 ${}^1S_0 \rightarrow {}^1S_0$ ${}^3S_1 \rightarrow {}^3S_1$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1} + \sigma_{2}\right)\left\{p_{1} - p_{2}, \, \delta(\vec{r})\right\} + B\left(\sigma_{1} + \sigma_{2}\right)\left[p_{1} - p_{2}, \, \delta(\vec{r})\right]$

³S₁ $\rightarrow^{1} P_{1}$, $C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ¹S₀ $\rightarrow^{3} P_{0}$, $+E i(\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i(\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PC $\Lambda N \rightarrow NN$ transitions:

 ${}^{1}S_{0} \rightarrow {}^{1}S_{0}, \qquad A' \hat{1} \,\delta(\vec{r}) + B' \,\sigma_{1}\sigma_{2} \,\delta(\vec{r})$ ${}^{3}S_{1} \rightarrow {}^{3}S_{1}, \qquad "$

PV $\Lambda N \rightarrow NN$ transitions:

 ${}^{3}S_{1} \rightarrow {}^{3}P_{1}, \quad A\left(\sigma_{1} + \sigma_{2}\right)\left\{p_{1} - p_{2}, \, \delta(\vec{r})\right\} + B\left(\sigma_{1} + \sigma_{2}\right)\left[p_{1} - p_{2}, \, \delta(\vec{r})\right]$

³S₁ $\rightarrow^{1} P_{1}$, $C(\sigma_{1} - \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + D(\sigma_{1} - \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$ ¹S₀ $\rightarrow^{3} P_{0}$, $+E i(\sigma_{1} \times \sigma_{2}) \{p_{1} - p_{2}, \delta(\vec{r})\} + F i(\sigma_{1} \times \sigma_{2}) [p_{1} - p_{2}, \delta(\vec{r})]$

PC $\Lambda N \rightarrow NN$ transitions:

 ${}^{1}S_{0} \rightarrow {}^{1}S_{0}, \qquad A' \,\hat{1}\,\delta(\vec{r}) + B'\,\sigma_{1}\sigma_{2}\,\delta(\vec{r}) \\ {}^{3}S_{1} \rightarrow {}^{3}S_{1}, \qquad "$

partial wave	operator	order	isospin
$^1S_0 \rightarrow ^1S_0$	$\hat{1},ec{\sigma}_1ec{\sigma}_2$	1	1
${}^1S_0 \rightarrow {}^3P_0$	$(ec{\sigma}_1-ec{\sigma}_2)ec{q}$, $(ec{\sigma}_1 imesec{\sigma}_2)ec{q}$	q/M_N	1
$^{3}S_{1} \rightarrow ^{3}S_{1}$	$\hat{1},ec{\sigma}_1ec{\sigma}_2$	1	0
$^{3}S_{1} \rightarrow^{1} P_{1}$	$(ec{\sigma}_1-ec{\sigma}_2)ec{q}$, $(ec{\sigma}_1 imesec{\sigma}_2)ec{q}$	q/M_N	0
$^{3}S_{1} \rightarrow ^{3}P_{1}$	$(ec{\sigma}_1+ec{\sigma}_2)ec{q}$	q/M_N	1
${}^3S_1 \rightarrow {}^3D_1$	$(ec{\sigma}_1 imes ec{q})(ec{\sigma}_2 imes ec{q})$	q^2/M_N^2	0

Equivalently, build up the Lorentz invariant Lagrangian from: $\overline{\Psi}\Psi, \overline{\Psi}\gamma^{\mu}\Psi, i\overline{\Psi}[\gamma^{\mu}, \gamma^{\nu}]\Psi = \overline{\Psi}2\sigma^{\mu\nu}\Psi, \overline{\Psi}\gamma^{\mu}\gamma^{5}\Psi, i\overline{\Psi}\gamma^{5}\Psi$

Equivalently, build up the Lorentz invariant Lagrangian from: $\overline{\Psi}\Psi, \overline{\Psi}\gamma^{\mu}\Psi, i\overline{\Psi}[\gamma^{\mu}, \gamma^{\nu}]\Psi = \overline{\Psi}2\sigma^{\mu\nu}\Psi, \overline{\Psi}\gamma^{\mu}\gamma^{5}\Psi, i\overline{\Psi}\gamma^{5}\Psi$

A. Parreño, HYP03, TJNAF, 10/14/2003 – p.10/22

4P potential

 $V_{4P}(\vec{q\,}) = \Big\{$

 $C_0^0 + C_0^1 \,\vec{\sigma}_1 \vec{\sigma}_2 \qquad \text{LO PC}$

Isospin part for the 4-fermion interaction: $\hat{O} \sim C_{IS} \hat{1} + C_{IV} \vec{\tau_1} \vec{\tau_2}$ Note that the $\Delta I = 1/2$ rule is assumed.

Number of parameters: to LO PC: 2 + 2 parameters

$4P \text{ potential} \\ V_{4P}(\vec{q}) = \begin{cases} C_0^0 + C_0^1 \vec{\sigma}_1 \vec{\sigma}_2 & \text{LO PC} \\ + C_1^0 \frac{\vec{\sigma}_1 \vec{q}}{2M} + C_1^1 \frac{\vec{\sigma}_2 \vec{q}}{2M} + i C_1^2 \frac{(\vec{\sigma}_1 \times \vec{\sigma}_2) \vec{q}}{2\tilde{M}} & \text{LO PV} \end{cases}$

Isospin part for the 4-fermion interaction: $\hat{O} \sim C_{\text{IS}} \hat{1} + C_{\text{IV}} \vec{\tau_1} \vec{\tau_2}$ Note that the $\Delta I = 1/2$ rule is assumed.

Number of parameters: to LO PC: 2 + 2 parameters to LO PV: 2 + 3 + 2 parameters

4P potential

 $V_{4P}(\vec{q}) = \begin{cases} C_0^0 + C_0^1 \vec{\sigma}_1 \vec{\sigma}_2 & \text{LO PC} \\ + C_1^0 \frac{\vec{\sigma}_1 \vec{q}}{2M} + C_1^1 \frac{\vec{\sigma}_2 \vec{q}}{2M} + iC_1^2 \frac{(\vec{\sigma}_1 \times \vec{\sigma}_2) \vec{q}}{2\tilde{M}} & \text{LO PV} \\ + C_2^0 \frac{\vec{\sigma}_1 \vec{q} \cdot \vec{\sigma}_2 \vec{q}}{4M\overline{M}} + C_2^1 \frac{\vec{\sigma}_1 \vec{\sigma}_2 \cdot \vec{q}^2}{4M\overline{M}} + C_2^2 \frac{\vec{q}^2}{4M\overline{M}} & \text{NLO PC} \end{cases}$

Isospin part for the 4-fermion interaction: $\hat{O} \sim C_{\text{IS}} \hat{1} + C_{\text{IV}} \vec{\tau_1} \vec{\tau_2}$ Note that the $\Delta I = 1/2$ rule is assumed.

Number of parameters: to LO PC: 2 + 2 parameters to LO PV: 2 + 3 + 2 parameters to NLO PC: 2 + 3 + 4 + 2 parameters (Method: Migrad minimizer (Minuit, CERN))

... etc.

$V(\vec{r})$ at Lowest Order

$V(\vec{q}) \Rightarrow \text{F.T.} \Rightarrow V(\vec{r}) \qquad V(\vec{r}) = V_{\pi}(\vec{r}) + V_{K}(\vec{r}) + V_{4P}(\vec{r})$

$V(\vec{r})$ at Lowest Order

 $V(\vec{q}) \Rightarrow \mathsf{F.T.} \Rightarrow V(\vec{r}) \qquad V(\vec{r}) = V_{\pi}(\vec{r}) + V_{K}(\vec{r}) + V_{4P}(\vec{r})$

$$V_{\mu}(\vec{r}) = \frac{e^{-\mu r}}{4\pi r} \times \left[C_{\mu}^{SC} \vec{\sigma}_{1} \, \vec{\sigma}_{2} + C_{\mu}^{T} \left(1 + \frac{3}{\mu r} + \frac{3}{(\mu r)^{2}} \right) \times S_{12}(\hat{r}) + C_{\mu}^{PV} \left(1 + \frac{1}{\mu r} \right) \vec{\sigma}_{2} \cdot \hat{r} \right] \times \left[\hat{1}, \vec{\tau}_{1} \, \vec{\tau}_{2} \right]$$

$V(\vec{r})$ at Lowest Order

 $V(\vec{q}) \Rightarrow \text{F.T.} \Rightarrow V(\vec{r}) \qquad V(\vec{r}) = V_{\pi}(\vec{r}) + V_{K}(\vec{r}) + V_{4P}(\vec{r})$

$$V_{\mu}(\vec{r}) = \frac{e^{-\mu r}}{4\pi r} \times \left[C_{\mu}^{SC} \vec{\sigma}_{1} \, \vec{\sigma}_{2} + C_{\mu}^{T} \left(1 + \frac{3}{\mu r} + \frac{3}{(\mu r)^{2}} \right) \times S_{12}(\hat{r}) + C_{\mu}^{PV} \left(1 + \frac{1}{\mu r} \right) \vec{\sigma}_{2} \cdot \hat{r} \right] \times \left[\hat{1}, \vec{\tau}_{1} \, \vec{\tau}_{2} \right]$$

$$V_{4P}(\vec{r}) = \begin{cases} -\frac{2r}{\delta^2} \left[C_1^0 \frac{\vec{\sigma}_1 \hat{r}}{2M} + C_1^1 \frac{\vec{\sigma}_2 \hat{r}}{2M} + C_1^2 \frac{(\vec{\sigma}_1 \times \vec{\sigma}_2) \hat{r}}{2\tilde{M}} \right] & \text{LO PV} \\ -\frac{r^2}{\delta^2} \left[C_1^0 \frac{\vec{\sigma}_1 \hat{r}}{2M} + C_1^1 \frac{\vec{\sigma}_2 \hat{r}}{2M} + C_1^2 \frac{(\vec{\sigma}_1 \times \vec{\sigma}_2) \hat{r}}{2\tilde{M}} \right] & \text{LO PV} \\ -\frac{r^2}{\delta^2} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \right] \\ \times \frac{e^{-\vec{\sigma}_2}}{\delta^2 \pi^{3/2}} \times \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi^{3/2}} & -\frac{r^2}{\delta^2 \pi^{3/2}} & -\frac{r^2}{\delta^2 \pi^{3/2}} \left[C_{IS} \hat{1} + C_{IV} \vec{\tau}_1 \vec{\tau}_2 \right] & -\frac{r^2}{\delta^2 \pi$$

 $\delta\sim\rho$ meson range $\sqrt{2}m_{\rho}^{-1}\approx 0.36~{\rm fm}$

 $\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \{R\}\\\{1\} \{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$

$$\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \in R \\ \{1\} \{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$$

 $\mathcal{M}_{fi} \sim \langle \vec{k}_1 m_1 \vec{k}_2 m_2; \Psi_{\mathrm{R}}^{A-2} \mid \hat{O}_{\mathbf{\Lambda}\mathrm{N}\to\mathrm{NN}} \mid^{A}_{\mathbf{\Lambda}} Z \rangle$

$$\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \{R\}\\\{1\}\{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$$

$$\mathcal{M}_{fi} \sim \langle \vec{k}_1 m_1 \vec{k}_2 m_2; \Psi_{\mathrm{R}}^{A-2} \mid \hat{O}_{\mathbf{\Lambda}\mathbf{N}\to\mathbf{N}\mathbf{N}} \mid^{A}_{\mathbf{\Lambda}} Z \rangle$$

 $|^{A}_{\Lambda} Z \rangle \rightarrow |\Lambda N \rangle \otimes |\Psi^{A-2}_{B} \rangle$ Weak coupling scheme for the Λ :

$$\begin{array}{l} \bullet \quad |_{\Lambda}^{A} Z \rangle_{T_{I} T_{3_{I}}}^{J_{I} M_{I}} = | \alpha_{\Lambda} \rangle \otimes | A - 1 \rangle \\ \quad = \sum \langle j_{\Lambda} m_{\Lambda} J_{C} M_{C} | J_{I} M_{I} \rangle | (n_{\Lambda} l_{\Lambda} s_{\Lambda}) j_{\Lambda} m_{\Lambda} \rangle | J_{C} M_{C} T_{I} T_{3_{I}} \rangle \end{array}$$

Technique of coefficients of fractional parentage:

$$\Psi_{\rm as}^{J_C T_C \alpha}(1....N) = \sum_{J_{R_0} T_{R_0} \alpha_0 j_{\rm N}} \langle J_C T_C \alpha \{ | J_{R_0} T_{R_0} \alpha_0, j_{\rm N} \rangle \\ \times [\Psi_{\rm as}^{J_{R_0} T_{R_0} \alpha_0}(1....N-1) \otimes \phi^{j_{\rm N}}(N)]^{J_C T_C}$$

$$\Gamma = \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \sum_{\substack{M_i \{R\}\\\{1\}\{2\}}} (2\pi) \,\delta(M_H - E_R - E_1 - E_2) \frac{1}{(2J+1)} \mid \mathcal{M}_{fi} \mid^2$$

$$\mathcal{M}_{fi} \sim \langle \vec{k}_1 m_1 \vec{k}_2 m_2; \Psi_{\mathrm{R}}^{A-2} \mid \hat{O}_{\mathbf{\Lambda}\mathrm{N}\to\mathrm{NN}} \mid^{A}_{\mathbf{\Lambda}} Z \rangle$$

 $|^{A}_{\Lambda} Z \rangle \rightarrow |\Lambda N \rangle \otimes |\Psi^{A-2}_{B} \rangle$ Weak coupling scheme for the Λ :

$$\begin{array}{c|c} & |_{\Lambda}^{A} Z \rangle_{T_{I} T_{3_{I}}}^{J_{I} M_{I}} = | \alpha_{\Lambda} \rangle \otimes | A - 1 \rangle \\ & = \sum \langle j_{\Lambda} m_{\Lambda} J_{C} M_{C} | J_{I} M_{I} \rangle | (n_{\Lambda} l_{\Lambda} s_{\Lambda}) j_{\Lambda} m_{\Lambda} \rangle | J_{C} M_{C} T_{I} T_{3_{I}} \rangle \end{array}$$

Technique of coefficients of fractional parentage:

$$\Psi_{\rm as}^{J_C T_C \alpha}(1....N) = \sum_{J_{R_0} T_{R_0} \alpha_0 j_{\rm N}} \langle J_C T_C \alpha \{ | J_{R_0} T_{R_0} \alpha_0, j_{\rm N} \rangle \\ \times [\Psi_{\rm as}^{J_{R_0} T_{R_0} \alpha_0}(1....N-1) \otimes \phi^{j_{\rm N}}(N)]^{J_C T_C}$$

 $\mathcal{M}_{fi} \sim t_{\Lambda N \to NN}(S, M_S, T, T_3, S_0, M_{S_0}, T_0, T_{3_0}, l_\Lambda, l_N, \vec{P}, \vec{k})$

Incorporate the strong BB interaction

$$\begin{split} \Psi_{\Lambda N}(r) &= \phi_{\Lambda N}^{ho}(r) f(r) \\ f(r) &= \left(1 - e^{-r^2/a^2}\right)^n + br^2 e^{-r^2/c^2} & \Psi_{NN}(r) \\ \texttt{a=0.5 fm, b=0.25 fm}^{-2}, \texttt{c=1.28 fm, n=2} & \underline{\text{T-matrix} \Longleftrightarrow \texttt{NSC97f}} \end{split}$$

Experimental data used in the fit (10 points)

	Γ	$\Gamma_{ m n}/\Gamma_{ m p}$	$\Gamma_{ m p}$	\mathcal{A}
$^5_\Lambda$ He	$0.41\pm0.14\text{[B91]}$	0.93 ± 0.55 [B91]	$0.21\pm0.07\text{[B91]}$	0.24 ± 0.22 [K00]
	0.50 ± 0.07 [K95]	1.97 ± 0.67 [K95]		
		0.50 ± 0.10 [K02]		
$^{11}_{\Lambda}{\sf B}$	0.95 ± 0.14 [K95]	$1.04^{+0.59}_{-0.48}$ [B91]	$0.30^{+0.15}_{-0.11}$ [K95]	-0.20 ± 0.10 [K92]
		$2.16 \pm 0.58^{+0.45}_{-0.95}$ [K95]		
		$0.59^{+0.17}_{-0.14}$ [B74]		
$^{12}_{\Lambda}{ t C}$	0.83 ± 0.11 [K98]	$1.33^{+1.12}_{-0.81}$ [B91]	$0.31^{+0.18}_{-0.11}$ [K95]	-0.01 ± 0.10 [K92]
	0.89 ± 0.15 [K95]	$1.87 \pm 0.59^{+0.32}_{-1.00}$ [K95]		
	1.14 ± 0.2 [B91]	$0.59^{+0.17}_{-0.14}$ [B74]		
		0.87 ± 0.23 [K02]		

RESULTS

	π	+K	+ LO	+ LO	EXP:
			PC	PC+PV	
$\Gamma(^{5}_{\Lambda}{ m He})$	0.42	0.23	0.43	0.44	0.41 ± 0.14 [B91]
					0.50 ± 0.07 [K95]
$n/p(^{5}_{\Lambda}\mathrm{He})$	0.09	0.50	0.56	0.55	0.93 ± 0.55 [B91]
					0.50 ± 0.10 [K02]
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	-0.25	-0.60	-0.80	0.15	0.24 ± 0.22 [K00]

RESULTS

	π	+K	+ LO	+ LO	EXP:
			PC	PC+PV	
$\Gamma(^{5}_{\Lambda}{ m He})$	0.42	0.23	0.43	0.44	0.41 ± 0.14 [B91]
					0.50 ± 0.07 [K95]
$n/p(^{5}_{\Lambda}{ m He})$	0.09	0.50	0.56	0.55	0.93 ± 0.55 [B91]
					0.50 ± 0.10 [K02]
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	-0.25	-0.60	-0.80	0.15	0.24 ± 0.22 [K00]
$\Gamma(^{11}_{\Lambda}{ m B})$	0.62	0.36	0.87	0.88	0.95 ± 0.14 [K95]
$n/p(^{11}_{\Lambda}{ m B})$	0.10	0.43	0.84	0.92	$1.04^{+0.59}_{-0.48}$ [B91]
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	-0.09	-0.22	-0.22	0.06	-0.20 ± 0.10 [K92]
$\Gamma(^{12}_{\Lambda}C)$	0.74	0.41	0.95	0.93	1.14 ± 0.2 [B91]
					0.89 ± 0.15 [K95]
					0.83 ± 0.11 [K98]
$n/p(^{12}_{\Lambda}{ m C})$	0.08	0.35	0.67	0.77	0.87 ± 0.23 [K02]
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	-0.03	-0.06	-0.05	0.02	-0.01 ± 0.10 [K92]
$\hat{\chi}^2$			0.98	1.50	

RESULTS

	π	+K	+ LO	+ LO	EXP:
			PC	PC+PV	
$\Gamma(^{5}_{\Lambda}{ m He})$	0.42	0.23	0.43	0.44 (0.44)	0.41 ± 0.14 [B91]
					0.50 ± 0.07 [K95]
$n/p(^{5}_{\Lambda}{ m He})$	0.09	0.50	0.56	0.55 (0.55)	0.93 ± 0.55 [B91]
					0.50 ± 0.10 [K02]
$\mathcal{A}(^{5}_{\Lambda}\mathrm{He})$	-0.25	-0.60	-0.80	0.15 (0.24)	0.24 ± 0.22 [K00] \Leftarrow
$\Gamma(^{11}_{\Lambda}{ m B})$	0.62	0.36	0.87	0.88 (0.88)	0.95 ± 0.14 [K95]
$n/p(^{11}_{\Lambda}{ m B})$	0.10	0.43	0.84	0.92 (0.92)	$1.04^{+0.59}_{-0.48}$ [B91]
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	-0.09	-0.22	-0.22	0.06 (0.09)	-0.20 ± 0.10 [K92]
$\Gamma(^{12}_{\Lambda}C)$	0.74	0.41	0.95	0.93 (0.93)	1.14 ± 0.2 [B91]
					0.89 ± 0.15 [K95]
					0.83 ± 0.11 [K98]
$n/p(^{12}_{\Lambda}{ m C})$	0.08	0.35	0.67	0.77 (0.77)	0.87 ± 0.23 [K02]
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	-0.03	-0.06	-0.05	0.02 (0.03)	-0.01 ± 0.10 [K92]
$\hat{\chi}^2$			0.98	1.50 (1.15)	

Low-Energy Coefficients

	+ LO PC	+LO PC+PV
C_0^0	-1.51 ± 0.38	-1.09 ± 0.36
C_0^1	-0.86 ± 0.24	-0.63 ± 0.35
C_1^0		-0.45 ± 0.42
C_1^1		0.17 ± 0.22
C_1^2		-0.48 ± 0.20
C_{IS}	5.08 ± 1.27	5.69 ± 0.74
C_{IV}	1.47 ± 0.39	1.49 ± 0.23
$\hat{\chi}^2$	0.98	1.50

Low-Energy Coefficients

	+ LO PC	+LO	PC+PV
C_0^0	-1.51 ± 0.38	-1.09 ± 0.36	(-1.02 ± 0.35)
C_0^1	-0.86 ± 0.24	-0.63 ± 0.35	(-0.57 ± 0.29)
C_1^0		-0.45 ± 0.42	(-0.47 ± 0.17)
C_1^1		0.17 ± 0.22	(0.20 ± 0.19)
C_1^2		-0.48 ± 0.20	(-0.48 ± 0.22)
C_{IS}	5.08 ± 1.27	5.69 ± 0.74	(5.83 ± 0.82)
C_{IV}	1.47 ± 0.39	1.49 ± 0.23	(1.52 ± 0.24)
$\hat{\chi}^2$	0.98	1.50	(1.15)

Strong interaction model dependence

$\pi + K + LO PC + LO PV$			
	NSC97f	NSC97a	
$\Gamma(^{5}_{\Lambda}\text{He})$	0.44	0.44	
$n/p(^{5}_{\Lambda}\text{He})$	0.55	0.55	
$\mathcal{A}(^{5}_{\Lambda}\overline{\mathrm{He}})$	0.24	0.24	
$\Gamma(^{11}_{\Lambda}\mathrm{B})$	0.88	0.88	
$n/p(^{11}_{\Lambda}\mathrm{B})$	0.92	0.92	
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	0.09 🔶	0.11 \diamondsuit	
$\Gamma(^{12}_{\Lambda}C)$	0.93	0.93	
$n/p(^{12}_{\Lambda}\mathrm{C})$	0.77	0.78	
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	0.03 🔶	0.03 🔶	
C_0^0	-1.02 ± 0.35	-0.87 ± 0.46	
C_{1}^{0}	-0.57 ± 0.29	-0.53 ± 0.37	
C_0^1	-0.47 ± 0.17	-0.53 ± 0.22	
C_1^1	0.20 ± 0.19	0.25 ± 0.16	
C_{2}^{1}	-0.48 ± 0.22	-0.57 ± 0.17	
C_{IS}	5.83 ± 0.82	5.76 ± 0.74	
C_{IV}	1.52 ± 0.24	1.50 ± 0.22	
$\hat{\chi}^2$	1.15	1.15	

Dependence on the smearing (δ) **function**

	$\deltapprox 0.3 { m fm}$	$\deltapprox 0.36 { m fm}$	$\delta pprox 0.4 { m fm}$
	($pprox 900 { m MeV}$)	($pprox 770 { m MeV}$)	($\approx 500 { m MeV}$)
$\Gamma(^{5}_{\Lambda}\text{He})$	0.44	0.44	0.44
$n/p(^{5}_{\Lambda}\mathrm{He})$	0.55	0.55	0.55
$\mathcal{A}(^{5}_{\Lambda}\overline{\mathrm{He}})$	0.24	0.24	0.24
$\Gamma(^{11}_{\Lambda}\mathrm{B})$	0.88	0.88	0.88
$n/p(^{11}_{\Lambda}\mathrm{B})$	0.93	0.92	0.94
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	$\diamondsuit 0.08 \diamondsuit$	$\diamondsuit 0.09 \diamondsuit$	$\diamondsuit 0.06 \diamondsuit$
$\Gamma(^{12}_{\Lambda}C)$	0.93	0.93	0.93
$n/p(^{12}_{\Lambda}\mathrm{C})$	0.78	0.77	0.78
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	$\diamondsuit 0.02 \diamondsuit$	$\diamondsuit 0.03 \diamondsuit$	$\diamondsuit 0.02 \diamondsuit$
C_0^0	-1.91 ± 0.56	-1.02 ± 0.35	-0.73 ± 0.19
C_0^1	-1.08 ± 0.52	-0.57 ± 0.29	-0.73 ± 0.16
C_{1}^{0}	-0.61 ± 0.28	-0.47 ± 0.17	-0.39 ± 0.26
C_{1}^{1}	0.24 ± 0.35	0.20 ± 0.19	0.17 ± 0.26
C_{1}^{2}	-0.60 ± 0.46	-0.48 ± 0.22	-0.25 ± 0.23
C_{IS}	6.45 ± 0.66	5.83 ± 0.82	5.83 ± 0.96
C_{IV}	1.79 ± 0.26	1.52 ± 0.24	1.48 ± 0.29
$\hat{\chi}^2$	1.15	1.15	1.15

More recent (unpublished) data

 $A(^{5}_{\Lambda}\text{He}) = 0.24 \pm 0.22 \longrightarrow 0.09 \pm 0.08$ Kang, KEK-PS E462 (2003) $A(^{12}_{\Lambda}\text{C}) = -0.01 \pm 0.10 \longrightarrow 0.01 \pm 0.02$ Maruta, KEK (2003)

	+LO	EXP:
	PC + PV	
$\Gamma(^{5}_{\Lambda}\text{He})$	0.45	$0.41 \div 0.50$
$n/p(^{5}_{\Lambda}{ m He})$	0.46	$0.50 \div 0.93$
$\mathcal{A}(^{5}_{\Lambda}\overline{\mathrm{He}})$	0.07	0.09 ± 0.08
$\Gamma(^{11}_{\Lambda}{ m B})$	0.92	0.95 ± 0.14
$n/p(^{11}_{\Lambda}{ m B})$	0.31	$1.04\substack{+0.59\\-0.48}$
$\mathcal{A}(^{11}_{\Lambda}\mathrm{B})$	-0.03	-0.20 ± 0.10
$\Gamma(^{12}_{\Lambda}C)$	0.98	$0.83 \div 1.14$
$n/p(^{12}_{\Lambda}{ m C})$	0.28	0.87 ± 0.23
$\mathcal{A}(^{12}_{\Lambda}\mathrm{C})$	-0.01	0.01 ± 0.02
$\hat{\chi}^2$	3.27	

	+LO
	PC + PV
C_0^0	0.36 ± 0.16
C_0^1	-0.41 ± 0.25
C_1^0	-0.12 ± 0.05
C_1^1	0.13 ± 0.06
C_{1}^{2}	0.12 ± 0.03
C_{sc}	4.84 ± 0.25
C_{vec}	-2.42 ± 0.88
χ^2	3.27

We have presented our study of the nonmesonic weak decay using an EFT framework to describe the weak interaction.

- We have presented our study of the nonmesonic weak decay using an EFT framework to describe the weak interaction.
- The long-range components were described with pion and kaon exchange.

- We have presented our study of the nonmesonic weak decay using an EFT framework to describe the weak interaction.
- The long-range components were described with pion and kaon exchange.
- The short-range part is parametrized in leading-order PV and PC contact terms.

- We have presented our study of the nonmesonic weak decay using an EFT framework to describe the weak interaction.
- The long-range components were described with pion and kaon exchange.
- The short-range part is parametrized in leading-order PV and PC contact terms.
- We find coefficients of natural size with significant error bars, reflecting the level of experimental uncertainty.

- We have presented our study of the nonmesonic weak decay using an EFT framework to describe the weak interaction.
- The long-range components were described with pion and kaon exchange.
- The short-range part is parametrized in leading-order PV and PC contact terms.
- We find coefficients of natural size with significant error bars, reflecting the level of experimental uncertainty.
- The largest contact term corresponds to an isoscalar, spin-independent central operator.

- We have presented our study of the nonmesonic weak decay using an EFT framework to describe the weak interaction.
- The long-range components were described with pion and kaon exchange.
- The short-range part is parametrized in leading-order PV and PC contact terms.
- We find coefficients of natural size with significant error bars, reflecting the level of experimental uncertainty.
- The largest contact term corresponds to an isoscalar, spin-independent central operator.
- There is no indication of any contact terms violating the $\Delta I = 1/2$ rule.

We hope we have convinced you that EFT is a valid framework for the study of the weak decay.

We hope we have convinced you that EFT is a valid framework for the study of the weak decay.

The next generation of data from recent high-precision weak decay experiments currently under analysis holds the promise to provide much improved constraints for studies of this nature. We hope we have convinced you that EFT is a valid framework for the study of the weak decay.

- The next generation of data from recent high-precision weak decay experiments currently under analysis holds the promise to provide much improved constraints for studies of this nature.
- Work in progress:
 ♣ Error propagation under analysis
 ♣ Go to NLO? ⇒ Need of more independent data.
 The np → Λp reaction at RCNP, Osaka (S. Minami's talk on friday)

Gràcies.