

Hypernuclei at MAMI-C and PANDA

- Introduction
- ► Hypernuclei at MAMI-C: KAOS
- ► The GSI project: PANDA
- Search for the $\Xi(1860)$ in WA89

Birth, life and death of a hypernucle

Reminder: momentum distributions

semi inclusive measurements of one-nucleon knockout reactions provide information on the momentum distribution of the nucleon and hence on the nucleon wave function

Double Hypernuclei

1963: Danysz et al.

II

Multi-Hypernuclei are terra incognita, but they exist !

л¹⁰Ве

 1966: Prowse
 $_{\Lambda\Lambda}{}^{6}$ He

 1991: KEK-E176
 $_{\Lambda\Lambda}{}^{13}$ B (or $_{\Lambda\Lambda}{}^{10}$ Be)

 2001: AGS-E906
 $_{\Lambda\Lambda}{}^{4}$ H (~15);

 no binding energies

 2001: KEK-E373
 $_{\Lambda\Lambda}{}^{6}$ He

H. Takahashi et al., PRL 87, 212502-1 (2001)

2. (e,e'K) at MAMI-C

Existing data and experiments

- photoproduction
 - ▶ 1970: Cornell, CalTech, Bonn, DESY, Orsay
 - 2000: SAPHIR (Bonn), GRAAL (Grenoble), CLAS (Jlab, Hall B)
- electroproduction
 - 1970: Cornell, DESY, CEA
 - 2000: E93-018 (Jlab, Hall C), E98-108 (Jlab, Hall A)

New Experimental Opportunities

- Crystal ball +TAPS (A2)
 - real photons
 - calorimetry of neutral and charged particles
- ► KAOS (A1)
 - virtual photons
 - high resolution spectroscopy of charged particles

 $(\rightarrow \text{Volker Kochs talk})$

Hypernucleus production

Λ

cross section for A(e,e´K⁺)_AB in e.g. relativistic impulse approximation

$$ds \propto (2p)^{4} d^{4} (p_{e} + p_{A} - p_{e'} - p_{B} - p_{K}) \\ \times \frac{d^{3} \overset{r}{p_{e'}} m_{e}}{(2p)^{3} E_{e'}} \cdot \frac{d^{3} \overset{r}{p_{K}}}{(2p)^{3} E_{K}} \cdot \frac{d^{3} \overset{r}{p_{B}} (2m_{p}) (2m_{e})}{(2p)^{3} \sqrt{(p_{e} \cdot p_{A})^{2} - p_{e}^{2} p_{A}^{2}}} \\ \times \sum_{1} \sum_{M_{4} \sim M_{4}} \left| \sum_{24} \langle J_{f} M_{f} T_{f} N_{f} | C_{a}^{\dagger} C_{a} | J_{i} M_{i} T_{i} N_{i} \rangle \cdot \langle a' | t | a \rangle \right|^{2} \\ \text{matrix elements } \times \text{ elementary operator for } p(g, K^{+}) \Lambda$$

► key ingredient to the elementary operator $p(\gamma, K^+)\Lambda$

- nucleon wave function and spectroscopic factor (e.g. from (e,e´p))
- K⁺ optical potential (e.g. from K⁺ elastic scattering)
- Λ wave function
- We can map out the Λ wave function by varying the kaon angle

Kinematics

Kinematics $e + A^{A} Z \rightarrow e' + K^{+} + A^{A} (Z - 1)$

- strong correlation between kaon and scattered electron momentum
 - large momentum acceptance for both particles
- both particles are produced at small angle
 - forward double spectrometer

KAOS at 0°

chicane for primary beam

KaoS@MAMI

arrival of KaoS at Mainz on 11 June 2003

Fiberdetectors for KAOS

- ▶ requirements
 - high count rate capability
 - good position resolution (150 mm)
 - timing information (needed for trigger)
- ▶ realization
 - 0.83 mm fiber diameter
 - 4 fibers=1 PMT channel
 - 4000 channels
 - multi-anode phototube (32 ch/tube)
 - 32-ch discriminator based on double threshold discriminator chip GSI-3
- funded by HBFG

KAOS @ A1

- planing for setting up KaoS is ongoing
 - electrical power, water cooling...
 - parking position, vertical and horizontal moving
 - at 0°: chicane for beam dump (background!)
 - trigger

. . .

3. The GSI Future Project

The GSI Future Project

- origin of confinement ?
- hierarchy of quark masses ?
- atomic nucleus and nuclear matter as quark-gluon systems ?

Antiproton Storage Ring

Antiproto momentum 1.5 – 15 GeV/c Luminosity 2.1032 cm-2s-1 > beam diameter 10-100µm • $\Delta p/p = 10^{-4} \dots 3 \cdot 10^{-5}$ injection septum 20 m 0 electrton cooler circumference 442 m bending power 50 Tm detector ACIES SALAN

The PANDA Project

Double hypernuclei: what is known?

$B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}({}^{A-1}_{\Lambda}Z)$
$\Delta B_{\Lambda\Lambda}(A_{\Lambda\Lambda}Z) = B_{\Lambda}(A_{\Lambda\Lambda}Z) - B_{\Lambda}(A_{\Lambda}Z)$

Hyperkei	rn $B_{\Lambda\Lambda}$ (<i>MeV</i>)	$\Delta B_{\Lambda\Lambda}$ (MeV)	
${}_{\scriptscriptstyle\Lambda\Lambda}{}^6He$	10.9 ± 0.5	4.7 ± 0.6	Prowse (1966)
${}_{\Lambda\Lambda}{}^{6}He$	$7.25 \pm 0.19^{\tiny +0.18}_{\tiny -0.11}$	$1.01 \pm 0.20^{+0.18}_{-0.11}$	KEK-E373 (2001)
$^{10}_{\Lambda\Lambda}Be$	17.7 ± 0.4	4.3 ± 0.4	Danysz (1963) same
	8.5 ± 0.7	-4.9 ± 0.7	KEK-E176 (1991) event
$^{13}_{\Lambda\Lambda}B$	27.6 ± 0.7	4.8 ± 0.7	KEK-E176 (1991)
¹⁰ Be	12.33 ^{+0.35}		KEK-E373 (2001, unpublished)

- Interpreting $\Delta B_{\Lambda\Lambda}$ as $\Lambda\Lambda$ bond energy one has to consider e.g.
 - dynamical change of the core nucleus
 - ΛN spin-spin interaction for non-zero spin of core
 - excited states possible ...
- if $\Lambda\Lambda$ or intermediate Λ -nuclei are produced in excited states
 - Q-value difficult to determine (particularly for heavy nuclei)
 - nuclear fragments difficult to identify with usual emulsion technique
 - new concept required $\Rightarrow \gamma$ -spectroscopy!

Production of ΛΛ–Hypernuclei

 Ξ^{-} conversion in 2 Λ

 $\Xi^- + p \rightarrow \Lambda + \Lambda + 28.5 MeV$

- few times 10⁵ stopped Ξ per day
- γ-spectroscopy possible

Production of Double Hypernuclei

General Idea

Use pp Interaction to produce a hyperon "beam" (t~10⁻¹⁰ s) which is tagged by the antihyperon or its decay products

Ξ^- properties

Ξ⁻ mean lifetime 0.164 ns

 \blacktriangleright minimal distance production \Rightarrow capture

▶ initial momentum 100-500 MeV/c \Rightarrow range ~ few g/cm²

Ξ- capture

E-atoms: x-rays

- conversion
 - ► $\Xi^{-}(dss) p(uud) \Rightarrow \Lambda(uds) \Lambda(uds)$
 - $\blacktriangleright \Delta Q = 28 \text{ MeV}$
- Conversion probability approximatly 5-10%

Expected Count Rate

 Ingredients (golden events: Ξ⁺ trigger) Iuminosity 2.10³² cm⁻²s⁻¹ 		
 E⁺E⁻ cross section 2mb for pp p(100-500 MeV/c) 	Þ	700 Hz p ₅₀₀ ≈ 0.0005
± ± + reconstruction probability	0.5	200
 stopping and capture probability total captured Ξ⁻ 	p _{CAP} ≈ (Þ	3000 / day
 Ξ⁻ to ΛΛ–nucleus conversion probability total ΛΛ hyper nucleus production 	Þ	p _{ΛΛ} ≈ 0.05 4500 / month
 gamma emission/event, γ-ray peak efficiency 	p _γ ≈ 0. p _{GE} ≈ 0.	5 .1
~7/day "golden" γ-ray events		

~ several 100/day with KK trigger

high resolution γ -spectroscopy of double hypernuclei will be feasible

Competition

experiment	reaction	device	beam/ target	status	
BNL-AGS E885	$(\Xi^{-},^{12}C) \rightarrow ^{12}B + n$	neutron detector arrays	K ⁻ beam, diamond target	20000 stopped E	
BNL-AGS E906	2π decays	Cylindrical Detector System	K ⁻ beam line	few tens 2π decays of ${}^{4}_{\Lambda\Lambda}H$	
KEK-PS E373	(K⁻,K⁺)Ξ	emulsion	(K⁻,K⁺)	several hundreds stopped Ξ⁻	
facility	reaction	device	beam/ target	Captured X ⁻ per day	
JHF	(K⁻,K⁺)Ξ	spectrometer, $\Delta \Omega$ =30 msr	8·10 ⁶ /sec 5 cm ¹² C	<7000	
cold anti- protons	$p \bar{p} \to K^* \bar{K}^*$ $\bar{K}^* N \to X K$	vertex detector	10 ⁶ stopped p per sec	2000	
GSI-HESR	p p → Ξ Ξ	vertex detector + γ-spectrometer	L=2.10 ³² , thin target, production vertex \neq decay vertex	3000 "golden events" ~ 100000 KK trigger (numbers incl.trigger)	

Production of Ω -Atoms

Fundamental Properties of Baryons

- · Contributions to intrinsic quadrupole moment of baryons
 - One-gluon exchange
 - Meson exchange

$$Q_i = \int d^3r r(r)(3z^2 - r^2)$$

► J=1/2 baryons have no spectroskopic quadrupole moment

$$Q_{s} \propto (3J_{z}^{2} - J(J+1)) \xrightarrow{J=1/2}{J_{z}=1/2} 0$$

- Ω^- Baryon:
 - ► J=3/2
 - long mean lifetime 0.82·10⁻¹⁰ s
 - only one-gluon contributions to quadrupole moment
 - (A.J. Buchmann Z. Naturforsch. 52 (1997) 877-940)

A very strange Atom

M.M. Giannini, M.I. Krivoruchenko Phys. Lett. B 291, 329 (1992) • Ω atoms by $\Omega\overline{\Omega}$ produktion

- hyperfine splitting in Ω -atom
 - \Rightarrow electric quadrupole moment of Ω

spin-orbit	$\Delta E_{ls} \sim$	$(aZ)^4 \operatorname{I} m_{\Omega}$
quadrupole	$\Delta E_{\Theta} \sim$	$(aZ)^4 Om^3_{\Omega}$

• prediction
$$Q_{\Omega} = (0 - 3.1) \ 10^{-2} \ \text{fm}^2$$

- ► $E(n=11, I=10 \rightarrow n=10, I=9) \sim 520 \text{ keV}$
 - calibration with 511keV line!
- ► ΔE_{Θ} ~ few tenth of keV for Pb

close to 511keV

with high resolution γ-spectroscopy difficult but feasible if statistics sufficient

The PANDA Detector

- hermetic (4π)
- high rate
- PID (γ, e, μ, π, K, p)
- trigger (e, μ, Κ, D, Λ)
- compact (€)
- modular

- Solid state-micro-tracker
 - thickness ~ 3 cm
- High rate germanium detector

4. Ξ(1860) search in WA89

NA49: Ξ⁻⁻ Pentaquark

Observation of an Exotic S = -2, Q = -2 Baryon Resonance in Proton-Proton Collisions at the CERN SPS

C. Alt,⁹ T. Anticic,²⁰ B. Baatar,⁸ D. Barna,⁴ J. Bartke,⁶ M. Behler,¹³ L. Betev,^{10,9} H. Białkowska,¹⁸
A. Billmeier,⁹ C. Blume,^{7,9} B. Boimska,¹⁸ M. Botje,¹ J. Bracinik,³ R. Bramm,⁹ R. Brun,¹⁰ P. Bunčić,^{9,10}
V. Cerny,³ P. Christakoglou,² O. Chvala,¹⁵ J.G. Cramer,¹⁶ P. Csató,⁴ N. Darmenov,¹⁷ A. Dimitrov,¹⁷
P. Dinkelaker,⁹ V. Eckardt,¹⁴ G. Farantatos,² P. Filip,¹⁴ D. Flierl,⁹ Z. Fodor,⁴ P. Foka,⁷ P. Freund,¹⁴
V. Friese,^{7,13} J. Gál,⁴ M. Gaździcki,⁹ G. Georgopoulos,² E. Gładysz,⁶ S. Hegyi,⁴ C. Höhne,¹³ K. Kadija,²⁰
A. Karev,¹⁴ S. Kniege,⁹ V.I. Kolesnikov,⁸ T. Kollegger,⁹ R. Korus,¹² M. Kowalski,⁶ I. Kraus,⁷ M. Kreps,³
M. van Leeuwen,¹ P. Lévai,⁴ L. Litov,¹⁷ M. Makariev,¹⁷ A.I. Malakhov,⁸ C. Markert,⁷ M. Mateev,¹⁷
B.W. Mayes,¹¹ G.L. Melkumov,⁸ C. Meurer,⁹ A. Mischke,⁷ M. Mitrovski,⁹ J. Molnár,⁴ St. Mrówczyński,¹²
G. Pálla,⁴ A.D. Panagiotou,² D. Panayotov,¹⁷ K. Perl,¹⁹ A. Petridis,² M. Pikna,³ L. Pinsky,¹¹ F. Pühlhofer,¹³
J.G. Reid,¹⁶ R. Renfordt,⁹ W. Retyk,¹⁹ C. Roland,⁵ G. Roland,⁵ M. Rybczyński,¹² A. Rybicki,^{6,10} A. Sandoval,⁷
H. Sann,⁷,⁴ N. Schmitz,¹⁴ P. Seyboth,¹⁴ F. Siklér,⁴ B. Sitar,³ E. Skrzypczak,¹⁹ G. Stefanek,¹² R. Stock,⁹
H. Ströbele,⁹ T. Susa,²⁰ I. Szentpétery,⁴ J. Sziklai,⁴ T.A. Trainor,¹⁶ D. Varga,⁴ M. Vassiliou,² G.I. Veres,^{4,5}
G. Vesztergombi,⁴ D. Vranić,⁷ A. Wetzler,⁹ Z. Wiodarczyk,¹² I.K. Yoo,⁷ J. Zaranek,⁹ and J. Zimánvi⁴

(NA49 Collaboration)

¹NIKHEF, Amsterdam, Netherlands.
 ²Department of Physics, University of Athens, Athens, Greece.
 ³Comenius University, Bratislava, Slovakia.
 ⁴KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
 ⁵MIT, Cambridge, MA, USA.
 ⁶Institute of Nuclear Physics, Cracow, Poland.
 ⁷Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany.
 ⁸Joint Institute for Nuclear Research, Dubna, Russia.
 ⁹Fachbereich Physik der Universität, Frankfurt, Germany.
 ¹⁰CERN, Geneva, Switzerland.
 ¹¹University of Houston, Houston, TX, USA.
 ¹²Świetokrzyska Academy, Kielce, Poland.
 ¹³Fachbereich Physik der Universität, Marburg, Germany.
 ¹⁴Max-Planck-Institut für Physik, Munich, Germany.

Ξ^{-} in NA49

distance between primary and secondary vertex 12cm

- additional cuts on track impact position and angle
- ► 1640 Ξ⁻ events
- ► 551 anti-Ξ⁺ events

- Ξ^{-} combined with primary π^{-}
- $\bullet \quad \theta(\pi , \Xi^-) > 4.4^{\circ}$
- ▶ p(π+)>3GeV/c
 - ...several additional cuts

The WA89 Experiment

- Σ^{-} and π beam of 340 GeV/c, n-beam of 260 GeV/c
- 1993, 1994 data taking

heam

TRD

Target area

4.10⁸ interactions

TRD: beam identification

MWPC: tracking

Calorimeter: e, y n

Si-µ-strip vertex near target

WA89 Hyperon beam 1993 layout

Cross sections

- more than 20 different strange hadrons are analyzed under identical conditions
- typical statistical distribution with slope ~ 150 MeV

Ξ⁻ Mass Spectrum

X^{*0}(1690) Þ X⁻p⁺

$\Xi^{-}\pi^{-}$

- Further cuts on $p_{t'}$, $x_{F'}$, θ_{cm}
- additional (justified) cuts?
- ...more to come

Summary

- Hypernuclear Physics is getting mature after 50 years
- MAMI-C is on track
- PANDA and HESR will enable high statistics double hypernuclear physics
 - many questions to answer, many problems to solve
 - comments, suggestions, help... are very welcome

See you all in Mainz

2006

