Photoproduction of the doublystrange Ξ Hyperons

John W. Price UCLA Dept. of Physics and Astronomy

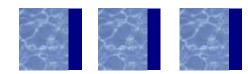
Hyperon and Strange Particle Physics Conference October 14-18, 2003

What is the universe made of?

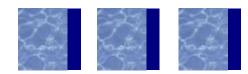
- ➤The Standard Model contains the following:
 ➤Bosons (γ, W[±], Z⁰, g)
 - >Leptons (e^{\pm} , μ^{\pm} , τ^{\pm} , ν_{e} , ν_{μ} , ν_{τ} + antineutrinos)
 - ▶Quarks (u, d, c, s, b, t + antiquarks)
- All particles start out massless
 - Mass comes from Higgs mechanism
 - >Accounts for ~2% of nucleon mass
- ≻Most mass due to non-perturbative QCD effects
 - ≻Need to know the structure of the nucleon

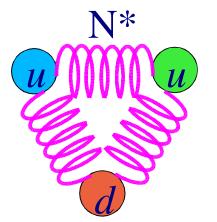


HYP03

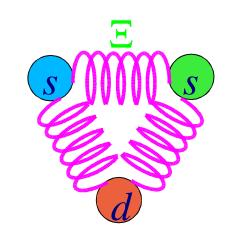


- Theory agrees with experiment qualitiatively, but not quantitatively
- Theory predicts many more states than have been observed

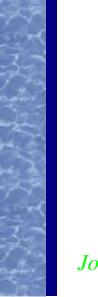

John W. Price


SU(3)_F Multiplets

With only qqq states, SU(3)_F gives four multiplets

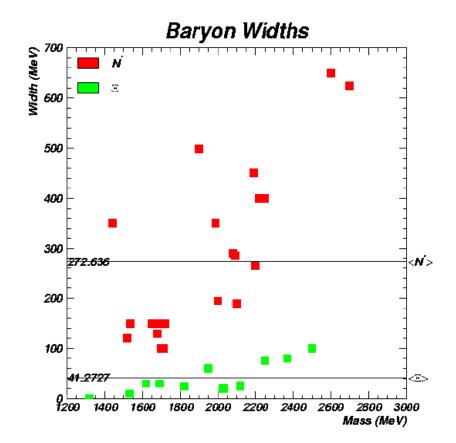

one singlet: (Λ) $SU(3)_{\rm F}$ requires the two octets: $\begin{pmatrix} N^{0} & N^{+} \\ \Sigma^{-} & \Sigma^{0} \Lambda & \Sigma^{+} \\ E^{-} & E^{0} \end{pmatrix}$ existence of a Ξ state for each N *and* one for each Δ one decuplet: $\begin{pmatrix} \Delta^{-} & \Delta^{0} & \Delta^{+} & \Delta^{++} \\ \Sigma^{-} & \Sigma^{0} & \Sigma^{+} \\ E^{-} & E^{0} \\ \Omega^{-} \end{pmatrix}$ 2001 RPP: 22 N, 22 $\Delta \dots 11\Xi$ where are the other 33?

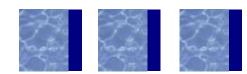
E quark structure


Replace two uquarks with $s \Rightarrow$ quarks

Except for the quark content, $\psi_{N^*} = (octet)\psi_{\Xi}$

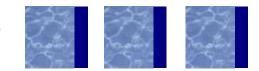
Properties should be related


So what?

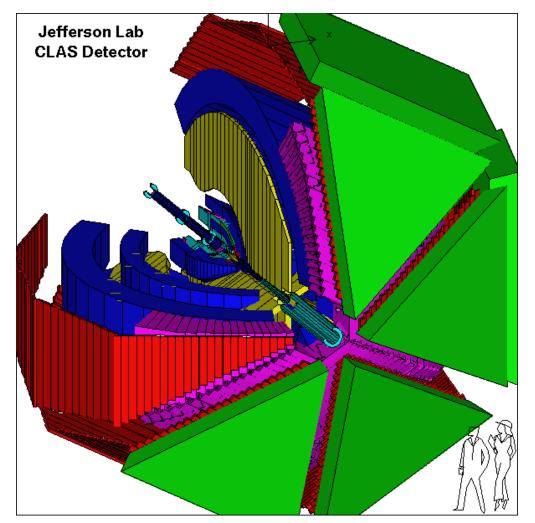


Using Ξ to study N*

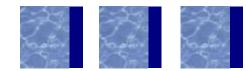
- E states are systematically narrower than N* states
 - Easier to distinguish from one another
- A new method for learning about the N* (and Δ*) states



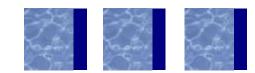
E Photoproduction


- ≻ Create the Ξ by photoproduction: $\gamma p \rightarrow K^+K^+\Xi^-$
 - First exclusive measurement of E photoproduction on the proton; best means of studying spectrum
- > Detect Ξ in missing mass of K⁺K⁺ system
- → In γp → K⁺K⁺X, missing (X) particle must:
 - ► have S = -2
 - ► have Q = -1
 - be a baryon
- \succ The Ξ^- is the only possibility

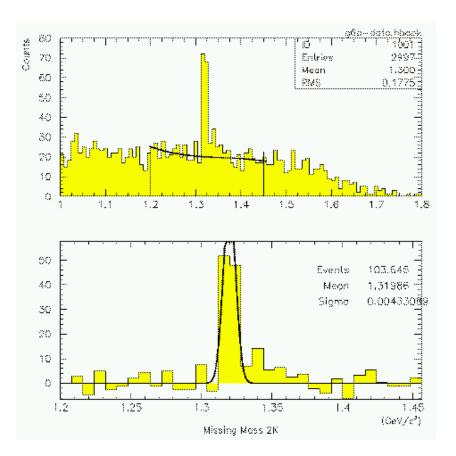
HYP03

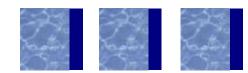


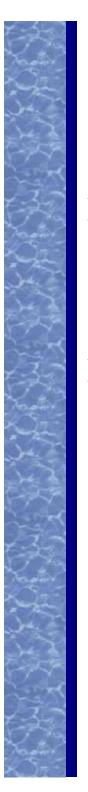
The CLAS detector


Toroidal magnetic field (yellow coils) bends charged particles toward or away from beamline

John W. Price

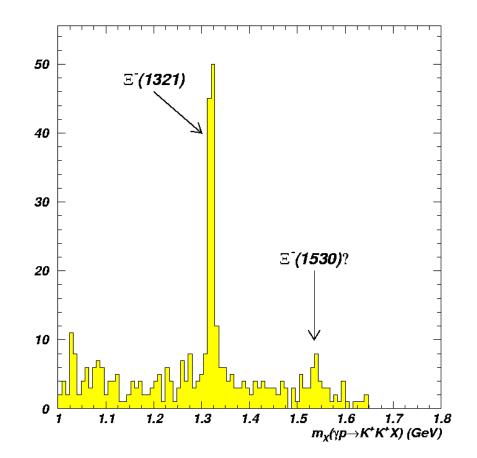

CLAS Data sets


 \triangleright All Ξ studies to date have used "mined" data \triangleright Data were not taken to look for Ξ physics \triangleright Existing data sets were compatible with Ξ studies $>g6a: 3.2 < E_{y} < 3.9 \text{ GeV}$ $>g6b: 3.0 < E_{\gamma} < 5.2 \text{ GeV}$ $> g6c: 4.8 < E_{\gamma} < 5.4 \text{ GeV}$

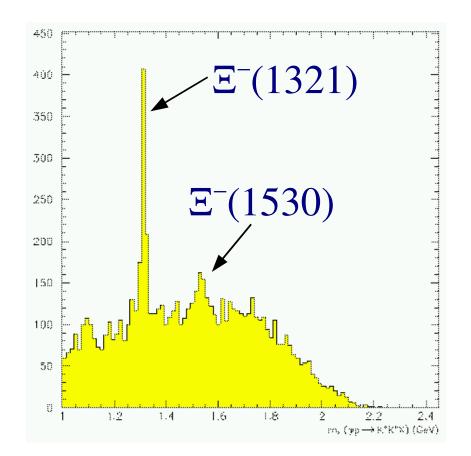


g6a final missing mass

- Select K^+K^+ events in g6a
- > Plot m_X of $\gamma p \in K^+ K^+ X$
- Fit background to 3rdorder polynomial
- 104 ± 16 events in peak

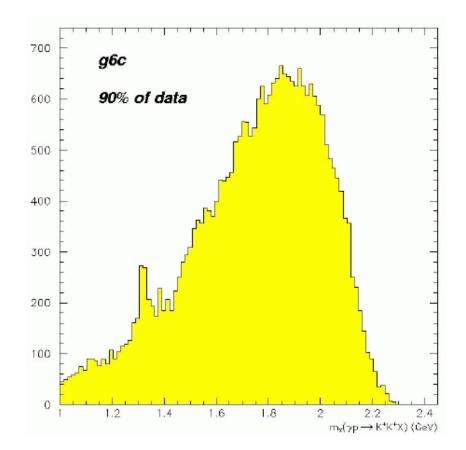


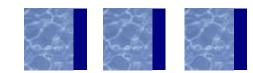
Where's the *Ξ***(1530)?**


- Tighter K⁺ PID cuts improve background suppression
- E(1530) may be peeking through

g6b missing mass

- *g6b* is analyzed the same way as *g6a*
- So Both ground state and $\Xi^{-}(1530)$ are seen
- Background is higher due to higher photon flux



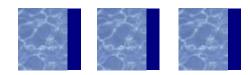

John W. Price

g6c missing mass

- ▶ g6c analyzed same as g6a, g6b
- Beam flux much higher
- More analysis needed to find signals from higher mass states

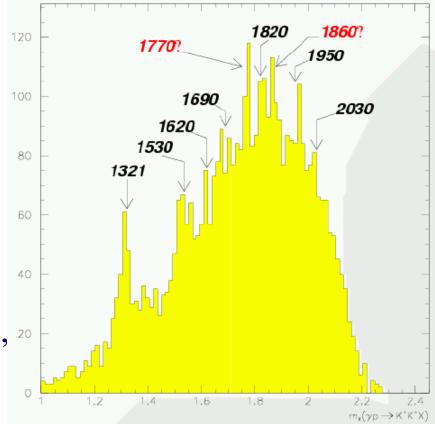
g6c Background Suppression

► Main backgrounds due to K/π misidentification


Background processes:

- $\succ \gamma p \rightarrow \pi^+ \pi^+ \Delta^-$
- $\succ \gamma p \rightarrow K^+ \pi^+ \Sigma^-$

≻Neither Δ^{-} nor Σ^{-} decays via proton

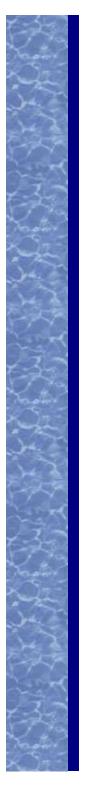

- $\succ \Delta^{-} \rightarrow \pi^{-} n$
- $\succ \Sigma^{-} \rightarrow \pi^{-} n$

Requiring a proton should cut the background



g6c missing mass with proton

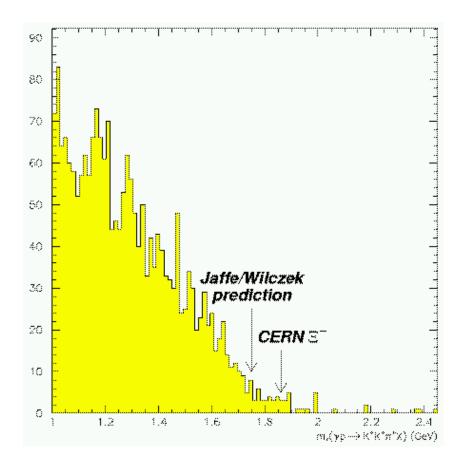
 $\succ \gamma p \rightarrow K^+ K^+ X$ $\succ X \rightarrow pX'$ >Interesting structure starts to appear >Enhancements in spectrum at all known Ξ states ▶ Persistent structures at 1770, ²⁰ 1860 MeV Many possible explanations


What about those pentaquarks?

► The Θ^+ is a member of an anti-decuplet

$$\begin{pmatrix} \Theta^+ \\ N^0 N^+ \\ \Sigma^- \Sigma^0 \Sigma^+ \\ \Xi^{--} \Xi^- \Xi^0 \Xi^+ \end{pmatrix}$$

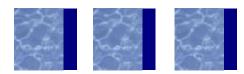
- > The Ξ^{--} and Ξ^+ cannot be qqq states
- ≻ Ξ⁻⁻ should be seen in $\gamma p \rightarrow K^+ K^+ \pi^+ \Xi^{--}$
- > New report from CERN: $\Xi^{--}(1860)$



Ξ⁻⁻ Pentaquark Search

Search for Ξ^{--} state by looking for a peak in the missing mass of $\gamma p \rightarrow$ $K^+K^+\pi^+X$

No statement from g6b
Phase space dies out
More energy needed
g6c results coming



Conclusions

- $\triangleright \Xi$ physics is getting interesting
 - Lots of structure appearing to confirm known states
 Possible new structure at 1770 and 1860 MeV
- E pentaquarks are the next big thing to look for
 CERN may already have seen E⁻⁻ at 1860 MeV
 JLab data under analysis; new data needed
- The existing Ξ program at JLab will produce some of the best new information on Ξ pentaquarks in the next few years

