Kaon Electroproduction on Few-Body Systems Jefferson Lab Experiment E91-016

Joerg Reinhold Florida International University

presented at HYP2003 October 17, 2003

Outline

- Motivation/history
- Experimental program
- Ln final state interaction
- S production off the neutron
- 3,4He data
- Parasitic analyses: w, ¹²C, ²⁷Al

Once Upon a Time (last millenium)

CEBAF PROPOSAL COVER SHEET

This Proposal must be mailed to:

CEBAF Scientific Director's Office 12000 Jefferson Avenue Newport News, VA 23606

and received on or before 1 October 1991.

B. Zeidman

Argonne Nationa PHY-203 9700 S. Cass Av Argonne, IL 60 Phone; (708)972

TITLE:

CONTACT PERSON:

ADDRESS:

ADDRESS, PHONE, AND ELECTRONIC MAIL

Electroproduct

Dec. '89 & Mar '90: PAC4 deferes PR89-013 Nov. 1991: PAC5 approves E91-016 Jan '96: PAC10 gives E91-016 A- rating

ion of Kaons and Light Hypernuclei	IS THIS PROPOSAL BASED ON A PREVIOUSLY SUBMITTED PROPOSAL OR LETTER OF INTENT? X YES NO UPDATE			
	IF YES, TITLE OF PREVIOUSLY SUBMITTED PROPOSAL OR LETTER OF INTENT:			
	Same Title 89-013			
1 Laboratory	(CEBAF USE ONLY) . PR 59-013 (Deferred) Receipt Date OCT 91			
439-4843 -4027 Bilmet. ZEIDMANGANLPHY	Las Number 1. J. Pegio14 (A 'O			

E91-016 Goals

Electroproduction of K⁺ on D, 3He, 4He

First survey of the (e,e'K) reaction on complex nuclei

Choose light nuclear targets because of large cross sections for Kaon production; Measurements have good signal/background ratios; good yields with short runs.

Measure quasifree L and S production on D, ^{3,4}He at $E_e=3$ GeV, $E_e=1-1.5$ GeV, $g_v=1.5-2$ GeV

Measurement of K+ production on D, ^{3,4}He with high precision provides: a) <3% statistical error over most of the missing mass spectrum b) the 3HL and 4HL bound state yields with <3% errors c) experimental data for K+-p and mass dependence of various rates, backgrounds, etc.

K⁺ production on D sensitive to L-N and S-N intercations; study L-N and S-N intercations in the cusp region Very few data available, even for H; theoretical calculations by Cotanch, Donelly, and others

Measure hypernuclear bound state production on ^{3,4}He Tests reaction dynamics and wave functions

Possibility of observing: bound S hyper-nuclear states; di-baryons

Provides a solid basis for planning future studies; a comprehensive base for hyper-nuclear studies; measurements extendable to cover wide range of energies and angles

Predictions for D(e,e'K⁺) S.R. Cotanch and S.S. Hsiao, T.W. Donnelly and S.R. Cotanch

Experimental Program

Particle Identification

K+ PID:

Coincidence time cuts separate 99.9 % reak K⁺, π^+ , p

Aerogel cuts reject 98 % π^+ b cuts reject 99 % p

e' PID

Cerenkov and calorimeter have ~ 99.8 % efficiency for electron PID

Missing Mass Analysis for p(e,e'K+)X

H(e,eK) Monte Carlo: SIMC

.Generate \mathbf{p}_e and $\mathbf{\hat{p}}_K$.mY determines $|\mathbf{p}_K|$.use reasonable model for ds/dW.radiate event.transport through spectrometers.reconstruct.compare with data.iterate ds/dW until data and MC agree

Simple Model for Hydrogen Data

X-section parametrization

Momentum Wavefunction (Bonn potential)

2 H(e,e'K⁺)

Modeling of FSI

$$\tilde{M}_{fi} = \frac{\psi(kr+\delta)}{\psi(kr)} M_{fi},$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{FSI} = f_{P.S.} |\tilde{M}_{fi}|^2 = f_{P.S.} |\frac{\psi(kr+\delta)}{\psi(kr)}|^2 |M_{fi}|^2$$

$$I = |\frac{\psi^*(kr+\delta)}{\psi(kr)}|^2$$

Ln Potential Parametrization

$$V(r) = V_A e^{r^2 / \beta_A^2} + V_R e^{r^2 / \beta_R^2}$$

Model	state	$V_A ({\rm MeV})$	$\beta_A \text{ (fm)}$	a (fm)	r (fm)
Verma	Singlet $({}^{1}S_{0})$	-167.34	1.100	-2.29	3.15
	Triplet $({}^{3}S_{1})$	-132.42	1.100	-1.77	3.25
Jülich A	Singlet $({}^{1}S_{0})$	-373.94	0.790	-1.60	1.33
	Triplet $({}^{3}S_{1})$	-144.14	1.059	-1.60	3.15
Jülich B	Singlet $({}^{1}S_{0})$	-131.49	1.095	-0.57	7.65
	Triplet $({}^{3}S_{1})$	-189.60	0.964	-1.94	2.42

Table 5.9: The parameters for the various potentials used in Eq. 5.11. The strength and range of the repulsive part are fixed for all three potentials at $V_R = 246.80$ MeV, $\beta_R = 0.82$ fm for the singlet state, and $V_R = 181.68$ MeV, $\beta_R = 0.82$ fm for the triplet state. From [8].

Ln FSI from ²H(e,e'K⁺)

Table 1: Scattering length and effective range for the three hyperon-nucleon potentials used in the simulations.

Model	State	$a~({\rm fm})$	$r \ ({\rm fm})$
Verma	$^{1}\mathrm{S}_{0}$	-2.29	3.15
	$^{3}\mathrm{S}_{1}$	-1.77	3.25
Jülich A	$^{1}\mathrm{S}_{0}$	-1.60	1.33
	$^{3}\mathrm{S}_{1}$	-1.60	3.15
Jülich B	$^{1}\mathrm{S}_{0}$	-0.57	7.65
	$^{3}\mathrm{S}_{1}$	-1.94	2.42

2 H(e,e'K⁺)

$$R_{\Lambda} = \frac{d\sigma}{d\Omega} (\gamma d \to K^{+} \Lambda)$$

$$R_{\Sigma} = \frac{d\sigma}{d\Omega} (\gamma d \to K^{+} \Sigma)$$

User Proposal to Hall C 12GeV Upgrade

Measurement of R_{Σ} at large W

Jörg Reinhold

June 8, 2002

The $(e, e'K^+)$ reaction on deuterium produces Λ , Σ^0 , and Σ^- hyperons. In a quasifree picture, the Λ and Σ^0 are produced of the proton, and the Σ^- is produced of the neutron. Isopsin conservation at the hadronic vertices predicts for the ratio total Σ production of deuterium ($\Sigma^0 + \Sigma^-$) to Σ^0 production of hydrogen,

$$R_{\Sigma} = \frac{\frac{d\sigma}{d\Omega} (\gamma d \to K^{+} \Sigma)}{\frac{d\sigma}{d\Omega} (\gamma p \to K^{+} \Sigma^{0})} , \qquad (1)$$

values of $R_{\Sigma} = 3$ for t-channel and $R_{\Sigma} = 1.5$ for s-channel. Photoproduction experiments performed in the 70s measured values of $R_{\Sigma} = 2.37 \pm 0.11 \pm 0.12$ [1] and $R_{\Sigma} = 2.73 \pm 0.18$ [2] for W = 4.6 GeV and W = 5.6 GeV, respectively. Jefferson Lab experiment E91-016 measured $R_{\Sigma} = 1.6$ for W = 1.9 GeV. The only earlier electroproduction experiment averages at $R_{\Sigma} = 1.89$ for W = 2.4GeV, but, suffers from large errors. All the results are summarized in Fig. 1. An almost linear increase of R_{Σ} with W is observed. Therefore, R_{Σ} could be a measure of the evolution of the reaction mechanism from primarily s-channel at low W to primarily t-channel at high W. The existing data, however, don't cover the transition region. The goal of this proposal is to measure R_{Σ} from close to threshold to the maximum W accessible with the proposed Hall C equipment. With 11 GeV beam energy, a maximum of W = 3.6 GeV is reached for $Q^2 = 1.4 \text{ GeV}^2$. At somewhat lower W L/T separations are kinematically accessible. This should also be explored. A measurement of R_{Σ} up to the maximum possible W combined with an L/T separation at lower W could determine the kinematic ranger over which longitudinal components dominate the reaction mechanism. This could guide experiments which strongly depend on the assumption of longitudinal mechanisms, like meson form factor measurements.

Bound A-Hypernuclear States for He

A=3

³_{Λ}H B = 130 keV, J^{π} = (1/2)⁺ (Hypertriton)

A=4

⁴_AHe $B_{\text{ground}} (0^+) = 2.93 \pm 0.03 \text{ MeV} B_{\text{excited}} (1^+) = 1.24 \pm 0.06 \text{ MeV}$

⁴_AH $B_{\text{ground}} (0^+) = 2.04 \pm 0.04 \text{ MeV} B_{\text{excited}} (1^+) = 1.00 \pm 0.06 \text{ MeV}$

Different Production Mechanism:

(K,π) negligible spin flip strength, good momentum matching, may populate substitutional states

 (π, K) substantial momentum transfer, may excite higher spin states, spin flip strength

(γ^{*,}K) Electroproduction: Large momentum transfer, large spin flip strength

^{3,4}He(e,e'K+)

Counts

Bound L-Hypernuclei A=4

Kaon-photon angle

T.Mart et al, NPA 640 (1998) 235

$$\frac{d\sigma_{\rm T}}{d\Omega_K} = \frac{1}{6} W_A^2 |F(Q)|^2 \left(\frac{d\sigma_{\rm T}}{d\Omega_K}\right)_{\rm proton},$$

$$F(Q) = \int d^3 \boldsymbol{q} \, d^3 \boldsymbol{p} \, \Psi_{_A^3H}(\boldsymbol{p}, \boldsymbol{q} + \frac{2}{3}\boldsymbol{Q}) \, \Psi_{^3He}(\boldsymbol{p}, \boldsymbol{q})$$

$$W_{A} = \sqrt{\frac{|\boldsymbol{q}_{K}^{\text{c.m.}}|_{^{3}\text{He}}}{|\boldsymbol{k}^{\text{c.m.}}|_{^{3}\text{He}}} \frac{|\boldsymbol{k}^{\text{c.m.}}|_{p}}{|\boldsymbol{q}_{K}^{\text{c.m.}}|_{p}} \frac{M_{^{3}\text{He}}E_{_{A}}^{^{3}}W_{p}^{2}}{m_{p}E_{A}W_{^{3}\text{He}}^{2}}}.$$

Cross section is kinematic factor times overlap integral times elementary cross section

Fig. 4. Differential cross section for kaon photoproduction off the proton and ³He as function of kaon angle. The elementary reaction (dotted line) is taken from Ref. [32] and the corresponding experimental datum is from Ref. [35]. The dashed line shows the approximation for production off ³He calculated from Eq. (32), the solid line represents the exact calculation using *S*-waves.

H(e,e'p)W: Pawel Ambozewicz

¹²C,²⁷Al(e,e'K): Wendy Hinton's analysis

Summary First d(e,e'K) with good resolution $R_1 = 1 = >$ quasifree production mechanism $R_s = 1.6 = > S$ production s-channel dominated First ever A(e,e'K) for A>2 ⁴He(e,e'K)⁴, H qualitatively shows formfactor

Outlook

HNSS achieved 1 MeV resolution
Hall A will take data early 2004 (Franco Garibaldi, Saturday)
New hypernuclear spectrometer HKS will take data later in 2004 (S.N. Nakamura, Saturday)
The HKS collaboration is considering the use of cryogenic targets for future few-body studies

E91-016 Collaboration

D. Abbott^b, A. Ahmidouch^{dfe}, P. Ambrozewicz^g, C.S. Armstrong^{bh}, J. Arrington^{ci}, R. Asaturyan^j, K. Assamagan^f, S. Avery^f, K. Bailey^c, O.K. Baker^f, S. Beedoe^d, H. Bitao^f, W. Boeglin^{ab}, H. Breuer^k, D.S. Brown^k, R. Carlini^b, J. Cha^f, N. Chant^k, E. Christy^f, A. Cochran^f, L. Cole^f, G. Collins^k, C. Cothran^l, J. Crowder^m, W.J. Cummings^c, S. Danagoulian^{db}, F. Dohrmann^{cn}, F. Duncan^k, J. Dunne^b, D. Dutta^o, T. Eden^f, M. Elaasar^p, R. Ent^b, L. Ewell^k, H. Fenker^b, H.T. Fortune^q, Y. Fujii^r, L. Gan^f, H. Gao^c, K. Garrow^b, D.F. Geesaman^c, P. Gueye^f, K. Gustafsson^k, K. Hafidi^c, J.O. Hansen^c, W. Hinton^f, H.E. Jackson^c, H. Juengst^s, C. Keppel^f, A. Klein^t, D. Koltenuk^q, Y. Liang^u, J.H. Liu^s, A. Lung^b, D. Mack^b, R. Madey^{fe}, P. Markowitz^{ab}, C.J. Martoff^g, D. Meekins^b, J. Mitchell^b, T. Miyoshi^r, H. Mkrtchyan^j, R. Mohring^k, S.K. Mtingwa^d, B. Mueller^c, T.G. O'Neill^c, G. Niculescu^{fv}, I. Niculescu^{fw}, D. Potterveld^c, J.W. Price^x, B.A. Raue^{ab}, P.E. Reimer^c, J. Reinhold^{abc}, J. Roche^h, P. Roos^k, M. Sarsour^y, Y. Sato^r, G. Savage^f, R. Sawafta^d, R.E. Segel^o, A. Semenov^e, S. Stepanyan^j, V. Tadevosian^j, S. Tajima^z, L. Tang^f, B. Terburg⁺, A. Uzzle^f, S. Wood^b, H. Yamaguchi^r, C. Yan₁^b, C. Yan₂^e, L. Yuan^f, B. Zeidman^c, M. Zeier^l, and B. Zihlmann^l

^aFlorida International University, ^bThomas Jefferson National Accelerator Laboratory, ^cArgonne National Laboratory, ^dNC A&T State University, ^eKent State University, ^fHampton University, ^gTemple University, ^hCollege of William and Mary, ⁱCalifornia Institute of Technology, ^jYerevan Physics Institute, ^kUniversity of Maryland, ¹University of Virginia, ^mJuniata College, ⁿForschungszentrum Rossendorf, ^oNorthwestern University, ^pSouthern University at New Orleans, ^qUniversity of Pennsylvania, ^rTohoku University, ^sUniversity of Minnesota, ^tOld Dominion University, ^uAmerican University, ^vOhio University, ^wThe George Washington University, ^xRensselaer Polytechnic Institute, ^yUniversity of Houston, ^zDuke University, ⁺University of Illinois

THE END