MASSES OF EXCITED BARYONS IN THE 1/N_c EXPANSION OF QCD

N.N. Scoccola, Buenos Aires

C.I., Schat, J.L., Goity and NNS Phys.Rev.Lett. **88** (02)102002 J.L., Goity, C.L., Schat and NNS, Phys.Rev. **D66** (02) 114014 J.L., Goity, C.L., Schat and NNS, Phys. Lett. **B564** (03) 83

QCD has no obvious expansion parameter. However, in 1974 t'Hooft realized that if one extends the QCD color group from SU(3) to $SU(N_c)$, where N_c is an arbitrary (odd) large number, then $1/N_c$ may treated as the relevant expansion parameter of QCD.

Baryons formed by N_c "valence" quarks with $M_b \sim \vartheta(N_c^{-1})$ and $A_{bb} \sim \vartheta(N_c^{-1})$. Moreover, $A_{bm} \sim \vartheta(N_c^{0})$. Moreover, it was realized that for ground state baryons a dynamical spin-flavor symmetry emerges for Large N_c (Germais-Sakin Dusten-Jenkins-Manchar).

For N_f =3 this allows to write any operator in terms of a power expansion of products of the 35 SU(6) generators

$$S_i = \sum S_i^{(n)}, T_a = \sum t_a^{(n)}, G_{ia} = \sum S_i^{(n)} t_a^{(n)}$$

Based on the existence of this Large III spin-flavor symmetry the operator analysis corresponds to expanding any operator associated with some observable as

$$\hat{O} = \sum_{n,i} c_{n,i} \hat{O}_{n,i}$$

where $c_{n,i}$ are unknown real coefficients to be determined by fitting to empirical accesible quantities. These coefficients encode the non-perturbative QCD dynamics which cannot be constrained by symmetries. Calculating these coefficients would be equivalent to solving QCD in the baryon sector.

On the other hand, $\hat{O}_{n,i}$ is n-body operator obtained as the product of color singlet (but, in general, spin-flavor non-singlet!) 1-body operators.

Rules to determine the Armorder of a given n-body operator are:

- 1. Note that n-body operators need at least n quarks exchanging (n-1) gluons. Thus, according to previous rules it carries a suppression factor $1/N_c^{n-1}$.
- 2. Some operators may act as coherent : i.e. they may have matrix elements of $\vartheta(N_c)$

In this work we analyzed the masses of orbitally excited [70, 1]-plet and [56, 2⁺]-plet baryons asseming that the spin-like approach is still a ground annual content in the Linguistic Country in a part from the generators of SU(6) listed above for

the core and excited particle, the orbital momentum of the excited quark l_i can be used to construct the effective operators.

The [70,1]-plet states

SU(6) irrep	SU(3) _f irrep	$\mathbf{J}^{\mathbf{P}}$	S = 0	S=-1 $I=0 I=1$		S = - 2	S = - 3
70 (l=1)	² 8	3/2	N(1520)	Λ(1690)	Σ(1580)**	Ξ(1820)	
		1/2⁻	N(1535)	Λ(1670)	Σ(1620)**		
	⁴ 8	1/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$		
		5/2 ⁻	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$		
		3/2	N(1700)	?	$\Sigma(1670)$		
	² 10	1/2	Δ(1620)				
		3/2	Δ(1700)				
	² 1	1/2⁻		Λ(1405)			
		3/2		$\Lambda(1520)$	ļ		

Following the N_c counting rules discussed above and making use of various reduction formulae we find that up to $\vartheta(1/N_c)$ there are eleven independent operators: 1 operator of $\vartheta(N_c)$, 3 operators of $\vartheta(N_c^0)$ and 7 operators of $\vartheta(1/N_c)$.

Note the existence of operators of $\vartheta(N_c^{\circ})$. For excited baryons spin-fluvor symmetry might be broken even for $N_c \to \infty$, unless corresponding coefficients can near to be dynamically successed.

The breaking of SU(3) flavor symmetry is driven by the mass difference between the s quark mass and that of the u,d quarks. A measure of the breaking is given by the ratio

$$\varepsilon = (M_K^2 - M_\pi^2)/\Lambda^2$$

where Λ is some light hadronic mass, e.g. the rho meson mass. We have included the SU(3) breaking at order ε . Note that for N_c =3, ε and 1/ N_c are of similar size. Thus, corrections of order ε / N_c are neglected.

The most general mass operator to this order is a linear combination of the 15 basis operators. Fortunately, the experimental data available in the case of the 70-plet is enough to obtain the unknown constants by performing a fit.

Inputs are:

- 17 masses of negative parity baryons with 3 or more stars in PDG
- The two leading order mixing angles θ_I =0.61±0.09 and θ_J =3.04±0.15 (from strong decays of non-strange baryons in the multiplet. See Isgur-Karl. Carone et al., Manohar –Jenkins:

Tall the 15 element of the Town of these 19 obserted .

Before proceeding it is important to establish relations among observables that hold to the order of the present analysis. It can be checked that, to order ε , there are 35 independent observables, namely 21 masses + 14 mixing angles. Since we have only 15 free parameters, there should be 20 relations. Seven of them involve mixing angles. The other 13 do not. They are

- 5 GitO relations (one per each outet)
- 4 equal spacing rules (two per decouplet)
- 4 novel relations which in to be splittings across multiplets.

Not emough experimental injurial literal all these relations.—

What about the fitting parameters?

N_c^{-1}	$O_1 = N_c 1$	$c_1 = 449 \pm 2$
N_c°	$O_{2} = l_{i} s_{i}$ $O_{3} = \frac{3}{N_{c}} l_{ij}^{(2)} g_{ia} G_{ja}^{c}$	$c_2 = 52 \pm 15$ $c_3 = 116 \pm 44$
	$O_4 = \frac{4}{N_c + 1} l_i \ t_a \ G_{ja}^c$	$c_4 = 110 \pm 16$
	$O_{s} = \frac{1}{N_{s}} l_{i} S_{i}^{c}$	$c_5 = 74 \pm 30$
	$O_6 = \frac{1}{N_c} S_i^c S_i^c$	$c_6 = 480 \pm 15$
	$O_7 = \frac{1}{N_c} s_i S_i^c$	$c_7 = -159 \pm 50$
N_c^{-1}	$O_{8} = \frac{2}{N_{\cdot i}} l_{ij}^{(2)} s_i S_j^c$	$c_8 = 3 \pm 55$
	$O_{9} = \frac{3}{N_{c}^{2}} l_{i} g_{ja} \left\{ S_{j}^{c}, G_{ia}^{c} \right\}$	$c_9 = 71 \pm 51$
	$O_{10} = \frac{2}{N_c^2} t_a \left\{ S_i^c, G_{ia}^c \right\}$	$c_{10} = -84 \pm 28$
	$O_{11} = \frac{3}{N_c^2} l_i g_{ia} \left\{ S_j^c, G_{ja}^c \right\}$	$c_{11} = -44 \pm 43$
	$\overline{B_1} = t_8 - \frac{1}{2\sqrt{3}N_0}O_1$	$d_1 = -81 \pm 36$
	$\overline{B_2} = T_8^c - \frac{N_c - 1}{2\sqrt{3} N_c} O_1$	$d_2 = -194 \pm 17$
$\epsilon N_c^{^0}$	$\overline{B_3} = \frac{10}{N_c} d_{8ab} g_{ia} G_{ib}^c + \frac{5(N_c^2 - 9)}{8\sqrt{3}N_c^2(N_c - 1)} O_1 +$	$d_3 = -15 \pm 30$
	$+\frac{5}{2\sqrt{3}(N_c-1)}O_6+\frac{5}{6\sqrt{3}}O_7$	
	$\overline{B_4} = 3 l_i g_{i8} - \frac{\sqrt{3}}{2} O_2$	$d_4 = -27 \pm 19$

Natural order: For singlets $\sim 500~{\rm MeV}.$

For SU(3) breaking ε .500 MeV ~150-200 MeV

We observe that:

- Although spin-flavor symmetry is broken at $\vartheta(N_c^0)$, the corresponding operators are dynamically suppressed. Their coefficients are substantially smaller than the natural size.
- The chief contribution to spin-flavor breaking stems form the $\vartheta(1/N_c)$ hyperfine operator $O_6 = \frac{1}{N_c} s_i^{\ c} s_i^{\ c}$ which is purely a core operator. In particular the singlet Λ 's are not affected by O_6 (they have $S^c = 0$, while the other states are move upwards, explaining to a mansparent way the lightness of these two states.
- The long standing problem in NRQM of reconciling the $\Lambda(1520) \Lambda(1405)$ splitting with those of other spin orbit partners in the 70-plet is resolved. The Λ 's receive the relations of O_1 and l.s only, while for other states $O_2 = \frac{4}{N_0 + 1} l_1 t_a G_{ja}^c$ (OBE1).

The [56,2⁺]-plet states

SU(6)	SU(3) _f	τ ^P			= - 1		
ігтер	іггер	<u>J</u> *	S = 0	I = 0	I = 1	S = -2	S = -3
56 ⁺ (l=2)	² 8	3/2+	N(1720)	Λ(1890)	?		
		5/2 ⁺	N(1680)	$\Lambda(1820)$	Σ(1915)		
	⁴ 10	1/2+	Δ(1910)				
		3/2+	Δ(1920)		Σ(2080)**		
		5/2 ⁺	Δ(1905)				
		7/2+	Δ(1950)		Σ(2030)		

Proceeding as before we obtain up to order $1/N_c$ and εN_c^0

N_c^{-1}	$O_1 = N_c 1$	$c_1 = 541 \pm 4$
N_c^{-1}	$O_2 = \frac{1}{N_c} l_i S_i^c$	$c_2 = 18 \pm 16$
	$O_3 = \frac{1}{N_c} S_i^c S_i^c$	$c_3 = 241 \pm 14$
	$\overline{B_i} = -S$	$d_1 = -206 \pm 18$
$\mathcal{E}N_{c}^{^{0}}$	$\overline{B_2} = \frac{1}{N_c} l_i \ G_{i8}^c - \frac{1}{2\sqrt{3}} O_2$	$d_2 = -104 \pm 64$
	$\overline{B_3} = \frac{1}{N_c} S_i G_{i8}^c - \frac{1}{2\sqrt{3}} O_2$	$d_3 = 223 \pm 68$

We observe

- No SU(3) singlet operator at $artheta(N_c^0)$
- Breaking of spin-flavor symmetry from spin-orbit is small.
- SU(3) breaking dominated by $\overline{B_1}$ which gives 200 MeV per unit of strangeness. $\overline{B_{23}}$ provide e.g. $\Lambda \Sigma$ splittings in the obtain

Basis contains 6 operators and there are 24 masses we get 18 mass relations. Apart from GMO and EQS relations there are 8 relations. They are well satisfied by data when available (4 relations if one and 2 stars resonances excluded, 7 if included).

SUMMARY AND CONCLUSIONS

- The $1/N_c$ expansion for excited baryons has been implemented under the assumption that there is an approximate spin-flavor symmetry in the Large N_c limit. Since our analysis shows that 0^{th} order corrections, when they exist, have a magnitude smaller that the natural size and, on the hand there are no unnaturally large corrections, the scheme seems to be consistent.
- A good fit to the known spectrum is obtained for both the [70,1] and the [56,2]-plets. At the same time, the approach has predictivity. Motivation to a perimentally establish a few more states of both multiplets.
- In the [70,1]-plet, the singlet A's appear naturally as the lightest particles in the multiplet and spin-orbit partners. The spin-orbit puzzle of 1 R.Q11 is reserved: Λ(1520)- Λ(1405) splitting is due to 1 to The wrong ordering of Δ(1646) and Δ(1720) implied by this operator is compensated by minimus operators, most prominently the fine or exchange operator C.
- Lattice QCD calculations could be very helpful in understanding the non-perturbative origin of the values obtained for the coefficients c_i and d_i.
- Present study should be complemented by a fully consistent Large N_c analysis of the strong decays of the states in the multiplets to the ground state baryons.