Experimental results of K⁺ photoproduction at SPring-8/LEPS

Mizuki Sumihama RCNP, Osaka Univ. for the LEPS collaboration

Introduction
 Experiment
 Data analyses
 Experimental results
 Summary

Super Photon Ring 8GeV (SPring-8)

HYP2003 Oct. 16th 2003

LEPS collaboration

D.S. Ahn^a, J.K. Ahn^b, H. Akimune^c, Y. Asano^d, W.C. Chang^e, S. Date^f, H. Ejiri^{a,f}, H. Fujimura^h, M. Fujiwara^{a,b}, K. Hicksⁱ, T. Hotta^a, K. Imai^j, T. Ishikawa^k, T. Iwata^l, H. Kawai^m, Z.Y. Kim^h, K. Kino^a, H. Kohri^a, N. Kumagai^f, S. Makinoⁿ, T. Matsumura^a, N. Matsuoka^a, T. Mibe^a, K. Miwa^j, M. Miyabe^j, Y. Miyachi^o, M. Morita^a, N. Muramatsu^d, T. Nakano^a, M. Niiyama^j, M. Nomachi^p, Y. Ohashi^f, T. Ooba^m, H. Ookuma^f, D. S. Oshuev^e, C. Rangacharyulu^q, A. Sakaguchi^p, T. Sasaki^j, P. M. Shagin^a, Y. Shiino^m, H. Shimizu^k, Y. Sugaya^p, M. Sumihama^a H. Toyokawa^f, A. Wakai^o, C.W. Wang^e, S.C. Wang^e, K. Yonehara^c, T. Yorita^f, M. Yosoi^j and R.G.T. Zegers^a, a Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan b Department of Physics, Pusan National University, Pusan 609-735, Korea c Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan d Japan Atomic Energy Research Institute, Mikazuki, Hyogo 679-5148, Japan e Institute of Physics, Academia Sinica, Taipei 11529, Taiwan f Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo 679-5198, Japan h School of physics, Seoul National University, Seoul, 151-747 Korea i Department of Physics, Ohio University, Athens, Ohio 45701, USA j Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan k Laboratory of Nuclear Science, Tohoku University, Sendai 982-0826, Japan l Department of Physics, Yamagata University, Yamagata, Yamagata 990-8560, Japan m Department of Physics, Chiba University, Chiba, Chiba 263-8522, Japan n Wakayama Medical College, Wakayama, Wakayama 641-0012, Japan o Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan p Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan q Department of Physics, University of Saskatchewan, Saskatoon, S7N 5E2, Canada r Department of Applied Physics, Mivazaki University, Mivazaki 889-2192, Japan

1. Introduction

Missing resonances N^{\ast} and Δ^{\ast} in strangeness channels

- Information on nucleon resonances mainly comes from the πN channel.
- Many nucleon resonances predicted by quark model are still missing.
- It is essential to fully know N^{*} and Δ^* to understand the structure of baryons.

Some resonances may couple to $K\Lambda$ or $K\Sigma$ channel. K⁺ photoproduction is good means to search missing resonances.

Resonance structure?

- Resonancelike structure in the cross section for $p(\gamma, K^+)\Lambda$ from SAPHIR was seen at ~1900 MeV.
- Missing resonance D₁₃(1895) is predicted by Mart and Bennhold. PRC vol.61 012201

CLAS data

More than one resonance is seen in the CLAS data.

- More precise studies are needed to confirm the existence of resonances.

- Need caution to define conclusions with cross sections only

Description of Kaon photoproduction

Ambiguities

tree-level effective-Lagrangian approach

- Choice of included resonances
- Coupling constant
- Hadronic form factors
- Treatment of background terms

Need more study to fix parameters.

- Need caution to define conclusions with cross sections only
- Additional observables are useful for further studies.
- There are the data of cross sections and recoil polarizations from SAPHIR and CLAS collaborations.
- Photon beam asymmetry is one of the good candidates.
- **LEPS** facility has a linearly polarized photon beam.

Theoretical predictions of photon asymmetry

By Mart & Bennhold PRC 61 012201 (1999)

By Janssen *et al* PRC 65 015201 (2002)

With $D_{13}(1895)$ A) Small cut-off massB) Λ^* in u-channelC) No restriction on g_{KYp}

Need more study to fix parameters.

Photon beam asymmetry is quite sensitive to model differences.

Meson exchange in t-channel

Contribution of t-channel meson exchange becomes large at $E_{\gamma} > 2GeV$.

Photon beam asymmetry Σ natural parity exchange (K^{*}) $\longrightarrow \Sigma = +1$ unnatural parity exchange (K, K₁) $\longrightarrow \Sigma = -1$

SLAC data at E_{γ} =16GeV

Photon beam asymmetry Σ

PRD vol.20 1553 (1979) $(\begin{bmatrix} 1.5 \\ b \\ + \\ b \end{bmatrix}) / (\begin{bmatrix} 0 \\ 0.75 \\ b \\ - \\ 0.25 \\ b \end{bmatrix} = 0.25$ 1.5 (a) 1.25 E $E_{r}=16 \text{ GeV}$ -0.25 $\gamma p \rightarrow K^{+}/$ -0.5 0 0.1 0.2 0.3 0.5 0.4 0.6 0.7 0.8 0.9 $-t in (GeV/c)^2$ 2.5 $\Sigma = (\sigma_{\rm T} - \sigma_{\rm H}) / (\sigma_{\rm T} + \sigma_{\rm H})$ $E_{\gamma} = 16 \text{ GeV}$ **(b**) 2 $\gamma p \rightarrow K^+ \Sigma^c$ 1.5 0.5 0 0.1 0.2 0.3 0.4 0.5 0.8 0.9 0.6 0.7

natural exchange (K*) $---> \Sigma = + 1$ unnatural exchange (K, K₁) $---> \Sigma = - 1$

unnatural exchange at very forward angles (small t)

LEPS beam : $E\gamma = 1.5 \sim 2.4 \text{ GeV}$

Line K + K* : M. Guidal *et al.* Nucl. Phys. A627 645(1997)

 $-t in (GeV/c)^2$

SPring-8/LEPS facility

2. Experimental method Photon beam

Linearly - polarized photons produced by backward-Compton scattering

• Photon energy $E\gamma = 1.5 \sim 2.4 \text{ GeV}$

- tagged by tagging counter (SSD and hodoscope)

• Energy Resolution 15 MeV

(due to beam conditions ..)

- Intensity
- Polarization

- $5 \times 10^5 \text{ cps} \longrightarrow \text{Now } 1 \times 10^6 \text{ cps}$
- ~92% at 2.4 GeV

~55% at 1.5 GeV

laser photons 98%

Experimental setup

Summary of data taking

- December, 2000 to June, 2001
- Trigger : more than one charged particle 20 Hz for 500 kHz@tagger
- Total number of photons at the target 2×10^{12} photons
- 52% data with vertical polarization 48% data with horizontal polarization

 Θ^+ , K⁺, ϕ photoproduction.... \downarrow \downarrow \downarrow PRL vol.91 092001-1 PRL vol.91 012002

Particle identification by time-of-flight and momentum measurements

TOF : RF signal - TOF wall, $\Delta t = 120$ ps Momentum : SSD, DCs, Tracking with Kalman filter, $\Delta p \sim 6$ MeV for 1GeV/c Kaon

Vertex position

z-vertex (mm)

closest distance between a track and the beam axis

3. Data analyses

Event selections for $p(\gamma, K^+)\Lambda$ and $p(\gamma, K^+)\Sigma^0$

1. Tagged photons

recoil electron reconstructed by Tagging counter

Event selections for $p(\gamma, K^+)\Lambda$ and $p(\gamma, K^+)\Sigma^0$

3. Events from the proton target (LH_2)

z-vertex point of K⁺

(closest point between K⁺ track and beam axis)

Contamination from the trigger counter (TRG) - plastic scintillator (CH)

significant at very forward angles

 $\begin{array}{ll} \thicksim 8\% & for \ \theta_{lab} \!\! < 5^o \\ < 2\% & for \ \theta_{lab} \!\! > 5^o \end{array}$

Missing mass spectrum

4. Λ and Σ^0 events

 2σ cut contamination Λ in Σ^0 and Σ^0 in $\Lambda < 1\%$

- $p(\gamma, K^+)\Lambda(1116)$ 72,500 events
- $p(\gamma, K^+)\Sigma^0(1193)$ 48,900 events

 $\begin{array}{l} 1.5 \; GeV < E\gamma < 2.4 \; GeV \\ (1.9 \; GeV < W < 2.3 \; GeV) \\ 0.6 < cos \theta_{cm}^{\mathrm{K}^{\scriptscriptstyle +}} < 1 \end{array}$

Photon beam asymmetry Σ

• Vertical $\frac{d\sigma}{d\Omega_{v}} = \frac{d\sigma}{d\Omega_{unpol}} [1 + P_{\gamma}\Sigma\cos(2\phi)]$ • Horizontal $\frac{d\sigma}{d\Omega_{h}} = \frac{d\sigma}{d\Omega_{unpol}} [1 - P_{\gamma}\Sigma\cos(2\phi)]$ vertical vertical

 $N = F_{acc} \frac{d\sigma}{d\Omega}$ Acceptance effect is canceled in first order

$$\frac{nN_{v} - N_{h}}{nN_{v} + N_{h}} = P_{\gamma}\Sigma\cos(2\phi)$$

- N : K⁺ photoproduction yield
- ϕ : K⁺ azimuthal angle
- P_{γ} : Polarization of photon
- n : Normalization factor for N_v

ጠ

Correction and systematic errors I

1. Contamination of π and proton in the K⁺ sample

2. Contamination from the trigger counter(TRG) in vertex cut

Correction for these contaminations is done by using the contamination rate and beam asymmetries of those BG events. $\Delta \Sigma = 0 \sim 0.03$

3. Normalization(n) of photon yields $n = n_h/n_v$: number of photons with horizontal/vertical polarization systematic error of n

 $\longrightarrow \Delta \Sigma = -0.02 \sim 0.06 \ll \text{statistical error}$

Correction and systematic errors II

- 4. Polarization degree and angle
- monitor the polarization run by run (~ 3hours) with polarimeter
- measurement error of polarization degree = 1.5%
- shift from the horizontal/vertical plane < 4°

5. Difference of acceptance

between horizontally and vertically polarized photon beam By Monte Carlo simulation, the effect of acceptance difference is $\Delta\Sigma < 0.01$

Total systematic error 2% << statistical error

4. Experimental results

- LEPS data
- Positive sign
- Increase as the Eγ increases (t-channel?)
- Different angular
 distribution between
 Λ and Σ⁰

Comparison with models

Experiment with Deuterium target

- Data taking was finished
- Oct. 2002 ~ June 2003
- Same trigger condition
- Target thickness 15cm
- By horizontal/vertical polarization of photons

Now, analyzing the data.

Photon beam asymmetry and cross section for the $n(\gamma, K^+)\Sigma^-$ etc.

5. Summary

- K⁺ photoproduction is useful to search for missing resonances. Photon beam asymmetry is good tool to define models.
- Photon beam asymmetries were obtained for the $p(\gamma, K^+) \Lambda$ and $p(\gamma, K^+)\Sigma^0$ reactions for the first time at $E\gamma = 1.5 \sim 2.4$ GeV at SPring-8/LEPS. Positive sign
- None of current models can reproduce our data, perfectly.
- Our data will stimulate the further development of the theoretical models and extend our knowledge of this reaction including missing resonances.
- Differential cross sections at very forward angles $(\cos\theta_{\rm cm} \sim 0.95)$ will be obtained near future.