Kaon Photoproduction on the Nucleon in Coupled-Channels

A. Waluyo and C. Bennhold

The George Washington University

Motivation

Review of the Model

Discussion

$\underline{M \ O \ T \ I \ V \ A \ T \ I \ O \ N}$

- Indication!
 - ▷ Weak signal in πN but strong signal in $K\Lambda(K\Sigma)$.

• Indication!

- ▷ Weak signal in πN but strong signal in $K\Lambda(K\Sigma)$.
- \triangleright Example: D_{13} nucleon resonances:

N*	$\Gamma_{\pi N}$	$\Gamma_{\Lambda K}$	$\Gamma_{\Sigma K}$
$D_{13}(1700)$	5-15~%	< 3%	-
$D_{13}(1900)$?	?	?

• Indication!

- \triangleright Weak signal in πN but strong signal in $K\Lambda(K\Sigma)$.
- \triangleright Example: D_{13} nucleon resonances:

N*	$\Gamma_{\pi N}$	$\Gamma_{\Lambda K}$	$\Gamma_{\Sigma K}$
$D_{13}(1700)$	5-15~%	< 3%	-
$D_{13}(1900)$?	?	?

▶ Why coupled-channels?

• Indication!

- \triangleright Weak signal in πN but strong signal in $K\Lambda(K\Sigma)$.
- \triangleright Example: D_{13} nucleon resonances:

N*	$\Gamma_{\pi N}$	$\Gamma_{\Lambda K}$	$\Gamma_{\Sigma K}$
$D_{13}(1700)$	5-15~%	< 3%	-
$D_{13}(1900)$?	?	?

 \triangleright Why coupled-channels? Unitarity \rightarrow N* decay in several channels.

Recent discovery of pentaquark $\Theta^+(1540)$

Recent discovery of pentaquark $\Theta^+(1540)$

• D. Diakonov, V. Petrov, and M. Polyakov (Z. Physics A359 (1997)) predicted $P_{11}(1710)$ belongs to anti-decuplet 5-quark state with small width $\Gamma \sim 40$ MeV.

Review of The Model

• Effective Chiral Lagrangian

- Effective Chiral Lagrangian
- Coupled-Channels

- Effective Chiral Lagrangian
- Coupled-Channels
- Bethe-Salpeter equation in the K-matrix Approximation

$$\mathcal{T}^{IJ\pm} = \left[rac{\mathcal{K}^{IJ\pm}}{1 - i\mathcal{K}^{IJ\pm}}
ight].$$

- Effective Chiral Lagrangian
- Coupled-Channels
- Bethe-Salpeter equation in the K-matrix Approximation

$$\mathcal{T}^{IJ\pm} = \left[\frac{\mathcal{K}^{IJ\pm}}{1 - i\mathcal{K}^{IJ\pm}}\right].$$
(1)

- Included Channels are:
 - ▶ Hadronic sector:

$$\pi N \to \pi N, \pi \pi N, \eta N, K\Lambda, K\Sigma$$
, and $\eta' N$

▶ Photoproduction sector:

 $\gamma N \to \pi N, \eta N, K\Lambda, K\Sigma$, and $\eta' N$.

- Effective Chiral Lagrangian
- Coupled-Channels
- Bethe-Salpeter equation in the K-matrix Approximation

$$\mathcal{T}^{IJ\pm} = \left[\frac{\mathcal{K}^{IJ\pm}}{1 - i\mathcal{K}^{IJ\pm}}\right].$$
(1)

- Included Channels are:
 - ▶ Hadronic sector:

$$\pi N \to \pi N, \pi \pi N, \eta N, K\Lambda, K\Sigma$$
, and $\eta' N$

▶ Photoproduction sector:

 $\gamma N \to \pi N, \eta N, K\Lambda, K\Sigma$, and $\eta' N$.

• Invariant center mass energy: 1.2 - 2.0 GeV.

- Effective Chiral Lagrangian
- Coupled-Channels
- Bethe-Salpeter equation in the K-matrix Approximation

$$\mathcal{T}^{IJ\pm} = \left[\frac{\mathcal{K}^{IJ\pm}}{1 - i\mathcal{K}^{IJ\pm}}\right].$$
(1)

- Included Channels are:
 - ▶ Hadronic sector:

$$\pi N \to \pi N, \pi \pi N, \eta N, K\Lambda, K\Sigma$$
, and $\eta' N$

▶ Photoproduction sector:

 $\gamma N \to \pi N, \eta N, K\Lambda, K\Sigma$, and $\eta' N$.

- Invariant center mass energy: 1.2 2.0 GeV.
- The 2π final state is parameterized through the coupling to a scalar isovector effective ζ -meson with mass $m_{\zeta} = 2m_{\pi}$.

Follow chiral lagrangian:

• Meson-Baryon-Baryon

$${\cal L}_{\phi BB} = - rac{g_{\phi BB}}{2m_N} ar B \gamma_5 \gamma_\mu (\partial^\mu \phi) B$$

Follow chiral lagrangian:

• Meson-Baryon-Baryon

$$\mathcal{L}_{\phi BB} = -\frac{g_{\phi BB}}{2m_N} \bar{B} \gamma_5 \gamma_\mu (\partial^\mu \phi) B \tag{2}$$

• For $\pi N \to \pi N$: Weinberg-Tomozawa term from chiral symmetry

where $F_{\pi} = 92.4$ MeV the (weak) decay constant of the pion, k and k' are incoming and outgoing pion respectively.

Follow chiral lagrangian:

• Meson-Baryon-Baryon

$$\mathcal{L}_{\phi BB} = -\frac{g_{\phi BB}}{2m_N} \bar{B} \gamma_5 \gamma_\mu (\partial^\mu \phi) B \tag{2}$$

• For $\pi N \to \pi N$: Weinberg-Tomozawa term from chiral symmetry

$$\Gamma_{\pi\pi NN} = -\frac{(\not\!\!\!\!\!\!/ + \not\!\!\!\!\!/)}{4F_{\pi}^2},\tag{3}$$

where $F_{\pi} = 92.4$ MeV the (weak) decay constant of the pion, k and k' are incoming and outgoing pion respectively.

 \longrightarrow very small contribution to the S and P partial waves of πN scattering.

• *t*-exchange of meson resonances

- *t*-exchange of meson resonances
 - ▷ Scalar Meson: $\sigma(550)$

$$T^{s} = -2g_{sNN}\frac{\bar{c}_{m}2m_{\pi}^{2} + \bar{c}_{d}(t - 2m_{\pi}^{2})}{F_{\pi}^{2}(t - m_{s}^{2})}$$
(4)

 \bar{c}_m and \bar{c}_d are coupling constant for each term.

- *t*-exchange of meson resonances
 - \triangleright Scalar Meson: $\sigma(550)$

$$T^{s} = -2g_{sNN}\frac{\bar{c}_{m}2m_{\pi}^{2} + \bar{c}_{d}(t - 2m_{\pi}^{2})}{F_{\pi}^{2}(t - m_{s}^{2})}$$
(4)

 \bar{c}_m and \bar{c}_d are coupling constant for each term.

▷ Vector Meson: $\rho(768), k^*(894)$ and $a_0(983)$

Mei β ner and Oller Nucl. Phys. A 673 (2000) 311-314

- *t*-exchange of meson resonances
 - \triangleright Scalar Meson: $\sigma(550)$

$$T^{s} = -2g_{sNN}\frac{\bar{c}_{m}2m_{\pi}^{2} + \bar{c}_{d}(t - 2m_{\pi}^{2})}{F_{\pi}^{2}(t - m_{s}^{2})}$$
(4)

 \bar{c}_m and \bar{c}_d are coupling constant for each term.

▷ Vector Meson: $\rho(768)$, $k^*(894)$ and $a_0(983)$

Mei β ner and Oller Nucl. Phys. A 673 (2000) 311-314

• Contact Terms.

$$\mathcal{L}_{\phi\phi BB} = \left(\alpha_1 g_{\mu\nu} + \frac{\alpha_2}{m_N} (P_\mu \gamma_\nu + \gamma_\mu P_\nu) + \frac{\alpha_3}{m_N^2} P_\mu P_\nu\right) (\partial^\mu \phi^\dagger) (\partial^\mu \phi) + \left(\alpha_4 \gamma_{\mu\nu} + \frac{\alpha_5}{m_N} \gamma_{\mu\nu\sigma} P^\sigma\right) (\partial^\mu \phi^\dagger) (\partial^\mu \phi).$$
(6)

8

Hadronic Sector:

• Popular but inconsistent (Rarita-Schwinger) $\phi N\Delta$ coupling:

$$\mathcal{L}_{\phi N\Delta} = \frac{g_{\phi N\Delta}}{m_{\pi}} \bar{\psi}^{\alpha} \Theta_{\alpha\mu}(z_{\phi}) \Gamma \psi(\partial^{\mu}\phi) + \text{H.c.},$$
$$\Theta_{\alpha\mu}(z) = g_{\alpha\mu} - \frac{1}{2}(1+2z)\gamma_{\alpha}\gamma_{\mu},$$
(7)

Hadronic Sector:

• Popular but inconsistent (Rarita-Schwinger) $\phi N\Delta$ coupling:

$$\mathcal{L}_{\phi N\Delta} = \frac{g_{\phi N\Delta}}{m_{\pi}} \bar{\psi}^{\alpha} \Theta_{\alpha\mu}(z_{\phi}) \Gamma \psi(\partial^{\mu}\phi) + \text{H.c.},$$
$$\Theta_{\alpha\mu}(z) = g_{\alpha\mu} - \frac{1}{2}(1+2z)\gamma_{\alpha}\gamma_{\mu},$$
(7)

Problem! It allows contribution of the higher spin $-\frac{3}{2}$ partial waves to the lower spin partial waves.

Hadronic Sector:

• Popular but inconsistent (Rarita-Schwinger) $\phi N\Delta$ coupling:

$$\mathcal{L}_{\phi N\Delta} = \frac{g_{\phi N\Delta}}{m_{\pi}} \bar{\psi}^{\alpha} \Theta_{\alpha\mu}(z_{\phi}) \Gamma \psi(\partial^{\mu}\phi) + \text{H.c.},$$
$$\Theta_{\alpha\mu}(z) = g_{\alpha\mu} - \frac{1}{2}(1+2z)\gamma_{\alpha}\gamma_{\mu},$$
(7)

Problem! It allows contribution of the higher spin $-\frac{3}{2}$ partial waves to the lower spin partial waves.

• Consistent $\phi N\Delta$ coupling (V. Pascalutsa *Phys. Rev.* D58 096002 (1998)):

$$\mathcal{L}_{\pi N\Delta} = -\frac{ig_{\phi N\Delta}}{2m_{\pi}m_{\Delta}}\bar{G}_{\mu\nu}i\varepsilon^{\mu\nu\alpha\beta}\gamma_{\beta}\gamma_{5}\Gamma\psi(\partial_{\alpha}\pi) + \text{H.c.}$$
(8)

Hadronic Sector:

• Popular but inconsistent (Rarita-Schwinger) $\phi N\Delta$ coupling:

$$\mathcal{L}_{\phi N\Delta} = \frac{g_{\phi N\Delta}}{m_{\pi}} \bar{\psi}^{\alpha} \Theta_{\alpha\mu}(z_{\phi}) \Gamma \psi(\partial^{\mu}\phi) + \text{H.c.},$$
$$\Theta_{\alpha\mu}(z) = g_{\alpha\mu} - \frac{1}{2}(1+2z)\gamma_{\alpha}\gamma_{\mu},$$
(7)

Problem! It allows contribution of the higher spin $-\frac{3}{2}$ partial waves to the lower spin partial waves.

• Consistent $\phi N\Delta$ coupling (V. Pascalutsa *Phys. Rev.* D58 096002 (1998)):

$$\mathcal{L}_{\pi N\Delta} = -\frac{ig_{\phi N\Delta}}{2m_{\pi}m_{\Delta}}\bar{G}_{\mu\nu}i\varepsilon^{\mu\nu\alpha\beta}\gamma_{\beta}\gamma_{5}\Gamma\psi(\partial_{\alpha}\pi) + \text{H.c.}$$
(8)

1. It gets rid of the unwanted lower spin component,

Hadronic Sector:

• Popular but inconsistent (Rarita-Schwinger) $\phi N\Delta$ coupling:

$$\mathcal{L}_{\phi N\Delta} = \frac{g_{\phi N\Delta}}{m_{\pi}} \bar{\psi}^{\alpha} \Theta_{\alpha\mu}(z_{\phi}) \Gamma \psi(\partial^{\mu}\phi) + \text{H.c.},$$
$$\Theta_{\alpha\mu}(z) = g_{\alpha\mu} - \frac{1}{2}(1+2z)\gamma_{\alpha}\gamma_{\mu},$$
(7)

Problem! It allows contribution of the higher spin $-\frac{3}{2}$ partial waves to the lower spin partial waves.

• Consistent $\phi N\Delta$ coupling (V. Pascalutsa *Phys. Rev.* D58 096002 (1998)):

$$\mathcal{L}_{\pi N\Delta} = -\frac{ig_{\phi N\Delta}}{2m_{\pi}m_{\Delta}}\bar{G}_{\mu\nu}i\varepsilon^{\mu\nu\alpha\beta}\gamma_{\beta}\gamma_{5}\Gamma\psi(\partial_{\alpha}\pi) + \text{H.c.}$$
(8)

- 1. It gets rid of the unwanted lower spin component,
- 2. It satisfies the gauge invariant with respect to the Δ field.

Hadronic Sector:

• Popular but inconsistent (Rarita-Schwinger) $\phi N\Delta$ coupling:

$$\mathcal{L}_{\phi N\Delta} = \frac{g_{\phi N\Delta}}{m_{\pi}} \bar{\psi}^{\alpha} \Theta_{\alpha\mu}(z_{\phi}) \Gamma \psi(\partial^{\mu}\phi) + \text{H.c.},$$
$$\Theta_{\alpha\mu}(z) = g_{\alpha\mu} - \frac{1}{2}(1+2z)\gamma_{\alpha}\gamma_{\mu},$$
(7)

Problem! It allows contribution of the higher spin $-\frac{3}{2}$ partial waves to the lower spin partial waves.

• Consistent $\phi N\Delta$ coupling (V. Pascalutsa *Phys. Rev.* D58 096002 (1998)):

$$\mathcal{L}_{\pi N\Delta} = -\frac{ig_{\phi N\Delta}}{2m_{\pi}m_{\Delta}}\bar{G}_{\mu\nu}i\varepsilon^{\mu\nu\alpha\beta}\gamma_{\beta}\gamma_{5}\Gamma\psi(\partial_{\alpha}\pi) + \text{H.c.}$$
(8)

- 1. It gets rid of the unwanted lower spin component,
- 2. It satisfies the gauge invariant with respect to the Δ field.

Similarly for $\gamma N\Delta$ coupling!

$\underline{D \ i \ s \ c \ u \ s \ s \ i \ o \ n}$

 \triangleright Clear $S_{11}(1650) \rightarrow$ the threshold region,

 \triangleright Clear $S_{11}(1650) \rightarrow$ the threshold region,

▷ $P_{11}(1710)$ and $P_{13}(1720)$ around W = 1700 MeV

 \triangleright Clear $S_{11}(1650) \rightarrow$ the threshold region,

- ▷ $P_{11}(1710)$ and $P_{13}(1720)$ around W = 1700 MeV
- \triangleright k^* exchange in the *t*-channel \rightarrow forward peaking in the high energy region.

Electromagnetic Reaction $\gamma p \to K^+ \Lambda$

Electromagnetic Reaction $\gamma p \to K^+ \Lambda$

▷ Hadronic and electromagnetic productions are consistent!

Examples of extracted N^* properties

Examples of extracted N^* properties

 $D_{13}(1900) \longrightarrow$ suggested by Mart & Bennhold using isobar model !

Examples of extracted N^* properties

 $D_{13}(1900) \longrightarrow$ suggested by Mart & Bennhold using isobar model !

M	=	$1912 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$598 \mathrm{MeV}$
$\Gamma_{\pi N}$	=	$51 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$598 \mathrm{MeV}$
$\Gamma_{\eta N}$	=	$12 \mathrm{MeV}$
$\Gamma_{K\Lambda}$	=	$13 \mathrm{MeV}$
$\Gamma_{K\Sigma}$	=	$4 \mathrm{MeV}$

M = 1729 MeV

$$M = 1729 \text{ MeV}$$

 $\Gamma_{\text{total}} = 504 \text{ MeV}$

M	=	$1729 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	=	$28 \mathrm{MeV}$

M	=	$1729 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	=	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$

M	=	$1729 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	=	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$
$\Gamma_{\eta N}$	=	$47 \mathrm{MeV}$

M	=	$1729 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	=	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$
$\Gamma_{\eta N}$	=	$47 \mathrm{MeV}$
$\Gamma_{K\Lambda}$	=	$122 \mathrm{MeV}$

M	=	$1729 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	=	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$
$\Gamma_{\eta N}$	=	$47 \mathrm{MeV}$
$\Gamma_{K\Lambda}$	=	$122 \mathrm{MeV}$
$\Gamma_{K\Sigma}$	=	$37 \mathrm{MeV}$

M	=	$1729 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	=	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$
$\Gamma_{\eta N}$	=	$47 \mathrm{MeV}$
$\Gamma_{K\Lambda}$	=	$122 \mathrm{MeV}$
$\Gamma_{K\Sigma}$	=	$37 \mathrm{MeV}$

M	=	$1729 \mathrm{MeV}$
$\Gamma_{ m total}$	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	—	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$
$\Gamma_{\eta N}$	=	$47 \mathrm{MeV}$
$\Gamma_{K\Lambda}$	—	$122 \mathrm{MeV}$
$\Gamma_{K\Sigma}$	=	$37 \mathrm{MeV}$

Diakonov et.al. prediction: $\Gamma_{\text{total}} = 40$ MeV.

M	=	$1729 \mathrm{MeV}$
Γ _{total}	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	—	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$
$\Gamma_{\eta N}$	=	$47 \mathrm{MeV}$
$\Gamma_{K\Lambda}$	=	$122 \mathrm{MeV}$
$\Gamma_{K\Sigma}$	=	$37 \mathrm{MeV}$

Diakonov et.al. prediction: $\Gamma_{\text{total}} = 40$ MeV.

 $P_{11}(1710)$ is not a 5-quark state in chiral soliton model.

M	=	$1729 \mathrm{MeV}$
Γ _{total}	=	$504 \mathrm{MeV}$
$\Gamma_{\pi N}$	—	$28 \mathrm{MeV}$
$\Gamma_{\pi\pi N}$	=	$270 \mathrm{MeV}$
$\Gamma_{\eta N}$	—	$47 \mathrm{MeV}$
$\Gamma_{K\Lambda}$	—	$122 \mathrm{MeV}$
$\Gamma_{K\Sigma}$	=	$37 \mathrm{MeV}$

Diakonov et.al. prediction: $\Gamma_{\text{total}} = 40$ MeV.

 $P_{11}(1710)$ is not a 5-quark state in chiral soliton model.

Thank you!