

Hypernuclear Physics with FINUDA at DA®NE

Aldo Zenoni University of Brescia (Italy) HYP2003 JLAB, Newport News, October 14-18, 2003

FINUDA is ready and "eager" to start physics

<u>SUMMARY</u>

- Status: $DA\Phi NE$ and FINUDA
- Performances of the detectors
- Targets for 2003 run
- Expected rates
- Highlights on the continuation of the program
- Conclusions

FI.NU.DA.: FIsica NUcleare a $DA\Phi NE$

Vertex detector assembly

S

1 111

10000

FINUDA detector performances

Cosmic rays with B= 0 T

Cosmic rays with B= 0 T

Cosmic rays with B= 1.1 T

Cosmic rays with B= 1.1 T

Interaction vertex region

Alignment of Silicon VDET with cosmic rays

19

PID with VDET x FINUDA

LMDC resolution and alignment

Straw tubes detector resolution

FINUDA physics program

 HYPERNUCLEAR SPECTROSCOPY is an essential tool for testing theoretical models of Λ-N potentials and single particle model predictions

- HYPERNUCLEAR DECAYS allows to study weak processes in nuclear matter $\Lambda \rightarrow \pi N$ $\Lambda N \rightarrow NN$ and $\Lambda NN \rightarrow nNN$

The high energy region of excitation in heavy Λ -hypernuclei cannot be explored with γ spectroscopy.

Best present spectroscopic data

Hypernucleus mesonic decay

¹²C targets are necessary for detector performance tuning and decay mode studies.
²⁷AI and ⁵¹V are medium-heavy nuclei that will be used for spectroscopic studies
⁶Li and ⁷Li are source of light hypernuclei

Neutron rich hypernuclei in FINUDA

Rates and integrated luminosity

Expected integrated luminosity from DATNE : >2 pb⁻¹/day

High resolution hypernuclear spectroscopy

54 $Hz[K^+K^-] \cdot 0.13[trig. and forward \pi^-rec. eff.] \cdot 10^{-3} [cap. rate] = 25 ev/h$

Good spectroscopic studies on ¹²C, ²⁷AI, ⁵¹V and ⁷Li can be performed with ~50 pb⁻¹ ~30 days

Non mesonic decay

10-3 ground level capture rate with 8 targets
pn and nn events in coincidence escaping FSI

0.15 pn detected events/h 0.04 nn detected events/h

To get a statistical error of 10% on Γ_{np} and Γ_{nn} on ${}_{\Lambda}{}^{5}$ He with 2 ⁶Li targets we need 100 pn events ~ 75 pb⁻¹ 80 nn events ~ 250 pb⁻¹

Highlights for the continuation of the program beyond 2003

Expected beam allocation in 2004 and 2005: $L_{int} = 500-700 \text{ pb}^{-1}$

Continuation on the survey of spectroscopy and decays with targets:

⁹Be ¹⁶O ²⁸Si ⁴⁰Ca (⁴⁸Ca) ⁵⁵Mn ⁸⁹Y ⁹⁸Nb ¹³³Cs ¹³⁹La ¹⁶⁵Ho ²⁰⁹Bi

 probably not all of them, but a ''reasonable'' selection, following the results of the 2003 run, in particular for the medium-A targets

and/or

- strong effort on particular targets if exciting results will be found (like neutron-rich ⁶_AH and ⁷_AH with ⁶Li and ⁷Li targets)
- The decision will depend also on the expected increase in luminosity, from $\sim 10^{32}$ cm⁻² s⁻¹ to $\sim 5 \ 10^{32}$ cm⁻² s⁻¹

Conclusions

We wish that the strong effort made at DADNE on Hypernuclear Physics with the ambitious research program of the FINUDA experiment, could properly celebrate the 50th anniversary of the discovery of Hypernuclei

The FINUDA Collaboration

- Torino University and I.N.F.N. Torino, Italy
- Torino Polytechnic and I.N.F.N. Torino, Italy
- Laboratori Nazionali di Frascati I.N.F.N., Italy
- Trieste University and I.N.F.N. Trieste, Italy
- Pavia University and I.N.F.N. Pavia, Italy
- Bari University and I.N.F.N. Bari, Italy
- Brescia University and I.N.F.N. Pavia, Italy
- TRIUMF, Vancouver, Canada
- Shahid Beheshty University, Teheran, Iran
- KEK, Japan