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ABSTRACT

SEARCH FOR THE ONSET OF COLOR TRANSPARENCY

THROUGH ρ0 ELECTROPRODUCTION ON NUCLEI

by

Lorenzo Zana
University of New Hampshire, May, 2010

Color Transparency is a QCD phenomenon which predicts a reduced level of interaction

for reactions where the particle state is produced in a point-like configuration. In this talk

I will present the analysis of the search for the onset of Color Transparency in ρ0 elec-

troproduction with the CLAS detector at Thomas Jefferson Laboratory. This experiment

used two different targets simultaneously to reduce the systematic error and achieve a more

precise measurement.The Nuclear Transparency was measured as a function of Q2 and Co-

herence Length (lc), and was found to be independent of the (lc on the range scanned in the

experiment. The increase in Nuclear Transparency observed with an increase in Q2 signify

the onset of the Color Transparency effect
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Chapter 1

MOTIVATIONS

The nuclear transparency for the coherent production of ρ0 mesons was measured on

2H, 12C and 56Fe in the Q2 range of 1.-2.5 GeV 2/c2 with the Continuous Electron Beam

Accelerator Facility [CLAS] detector at Jefferson Laboratory. The nuclear transparency

is extracted for a number of bins in Q2 as the ratio of ρ0 production on a nuclear target

over the production on deuterium. Systematic errors were reduced by measuring on these

two targets simultaneously. A rise in the nuclear transparency for increasing Q2 would

indicate the onset of Color Transparency [CT]. We will discuss the theoretical background,

the experimental setup, the data analysis and the outlook for this experiment.

In this chapter I will start giving a theoretical introduction to this experiment. First I will

introduce the Glauber model, which interprets the interaction with matter using a hadronic

description in quantum mechanics. Then I will present the Color Transparency concept as

was firstly developed using perturbative Quantum ChromoDynamics [pQCD] and will show

an example of how this description leads to a lower interaction of quark systems with nuclear

matter. Consequently I will present two different models which attempts to translate the

concept of Color Transparency in perturbative QCD to the case of lower energy. In the

last section, I will briefly describe different experiments that have searched for the Color

Transparency effect in nuclear matter.

1.1 Introduction

Twenty years of experiments have confirmed that perturbative QCD describes high momen-

tum transfer reactions in nuclear physics accurately. From another view, processes such as
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confinement, and the physics of spontaneously broken chiral symmetry, are yet to be under-

stood. Studies of coherent phenomenas (to be distinguished from coherence length effects,

as will be explained in detail later in this chapter) are important in order to understand

confinement and spontaneously broken chiral symmetry. Here, the field theory properties of

QCD play an important role in testing different ideas and models. For example, if one has

an high momentum color neutral system of closely separated quarks and gluons produced in

a collision, one can assume that this configuration will interact with the remaining nucleons

target with the emission of long wavelengths gluons. The leading term of the interaction,

which is like a “color monopole” term, will not give any contribution since the system is

color neutral. The next to leading order contribution is given by a “color dipole” term.

If the size of the system is small enough respect to the distance that characterizes the in-

teraction with the nucleons, we can assume that also the dipole effects will be suppressed.

The interaction will be defined in this case as “color screened” and the suppression of the

“dipole” term will be called Color Transparency.

If the momentum is high enough, the configuration of this particular system of quarks and

gluons, called a Point Like Configuration [PLC], will maintain its size through the nuclear

target. At lower momentum this Point Like Configuration object will have sufficient time

to evolve to its full hadron size. Experiments at this energies will be able to observe the

process of formation of an hadron and the consequent mechanisms of restoration of color

and pion fields.

In this experiment, we chose to use the rho-zero [ρ0] vector meson in order study the evolu-

tion of a Point Like Configuration and Color Transparency. In a 1960s paper [20], Sakurai

proposed that the photon interacts with nuclear matter through its hadronic fluctuations.

This is now expressed with the vector meson dominant model, where the hadronic com-

ponents of the photon consist of the lightest vector mesons, namely rho (ρ), omega (ω)

and phi (φ). The process of creation of vector mesons through the fluctuation of a virtual

photon in a q q̄ system, as well as its size dependence on the mass of the virtual photon, are

well understood (see [21]). The other advantage of studying the ρ0 comes from theoretical
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predictions which suggest that the effects of Color Transparency will become important at

lower energies for a q q̄ system, such as the ρ0, compared to hadrons consisting of 3 quarks.

This is simply due to the fact that quark-antiquark systems can be smaller in physical size

than three quark systems at the same energy.

1.2 Notation and conventions

This document will use natural units:

~ = 1 c = 1

Two different metric will be used, focusing on the one that will give an easier interpretation

of the physical behavior of the system. The theory chapter will mainly use Light Cone

coordinates (see [22] and [23] for physical background) with the metric given by:

gµν =



0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1


where

x+ =
x0 + x1√

2
, x− =

x0 − x1√
2

and the coordinate x2 and x3 will be referred to as Transverse coordinate ~xT to the light

cone direction, given in this case by x1. In the other section the more standard metric will

be used

gµν =



1 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


The kinematic variables used for describing the reaction are (see figure 1-1):
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Figure 1-1: Kinematic quantities used in this analysis. k and k’ describe the 4-momentum of
the incoming and scattered electron, p and M are the momentum and Mass of the incoming
nucleon and W is the mass of the recoiling system

• Q2 = −q2 , momentum transfer squared

• ν = Ek − Ek′ is the electron energy loss in the nucleon rest frame

• W 2 = (p+q)2 is the mass squared of the system recoiling against the scattered electron

An important quantity used in the search of Color Transparency is the Nuclear Transparency

TA. It is measured by taking the ratio of the nuclear per-nucleon cross section (σA/A) with

the free nucleon cross section (σN ).

TA
σA
AσN

(1.1)

1.3 Theoretical Background

Color Transparency [24] could be considered as the effect of two distinct phenomena that

select a particular configuration of the quark pair generated by the scattering process.

• The first selection is done by the kinematics of the reaction, that in our case will be

driven by Q2. This selection, as one can picture from considerations of Heisenberg’s

Principle, will choose quark configurations with a separation tuned by Q2.
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• From this ensemble of configurations, Nuclear filtering will select only the one config-

uration with small transverse distance between the quarks.

1.3.1 Glauber Model

For a better explaination of the theory of Color Transparency, I will start introducing the

Glauber Model [25] that, starting from an hadronic picture, develops the description of

the interaction with matter using collision theory from Quantum mechanics. If we start

describing the asymptotic picture of scattering of an incoming particle with momentum

~k through a target situated for simplicity at r = 0, we can describe this system using a

Schrodinger picture:

ψ(~r) ∼

(a)︷︸︸︷
ei
~k·~r +

(b)︷ ︸︸ ︷
f(θ)

eikr

r
(1.2)

where in equation 1.2 (a) refers to the incoming particle, (b) is connected to the outgoing

wave, scattered from the center of the axis and f(θ) is directly connected to the cross section

of the interaction.

f(θ) = f(~k, ~k′) ∼
∫
ei(
~k−~k′)·~rV (~r)d~r (1.3)

here ~k is the momentum of the incoming particle and ~k′ is the scattered one. If one can

assume cylindrical symmetry of the interacting potential over the axis of the incoming

particle, the only dependence of V (~r) will be of the impact parameter ~b (see figure 1-3

)which allows f(~k, ~k′) to be expanded

f(~k, ~k′) =
ik

2π

∫
ei(
~k−~k′)·~b ei(

~k−~k′)·ẑz Γ(~b) d2b dz = (1.4)

=− ik

2π

∫
ei(
~k−~k′)·~b ei(

~k−~k′)·ẑz(eiχ(~b) − 1) d2b dz (1.5)

Equations 1.4 and 1.5 define Γ(~b) and χ(~b) which give 2 complementary descriptions of the

interaction.

An important behavior of vector meson photoproduction, which can be interpreted using

the Glauber model, is the Coherence Length effect. The next part of this section follows

the study from Hufner et al. in Ref.[17]. In the study of photo-production of vector meson
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V

Nucleus

Figure 1-2: Schematic of Vector Meson photoproduction in an atom using the Glauber
approximation. Highlighted is also the z coordinate respect to the symmetry axis.

V off nucleus A, schematically γ∗A→ V X, one can imagine the interaction on the target

as the product of different combinations of:

1. vector meson photo-production on the nucleus

2. multiple elastic rescattering of the vector meson produced in step 1 with the other

nuclei of the material

One condition of the Glauber model is the small cone of possible directions of the

scattered particle respective to the incident beam’s direction. Due to this requirement, the

trajectory of the produced vector meson will not change direction significantly (will keep

“moving forward”), giving a restriction to the possible combinations of elastic rescattering,

depending on the place of photo-production in the atom, as shown in figure 1-3 . The vector

meson photo-production amplitude of the incident γ∗ on a nucleus A will be given in eikonal
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z

*

z j

z > zj

VVVV

sj
b

(b−sj )

Figure 1-3: Schematic of the interaction in an atom using the Glauber approximation: On
red are outlined the region where the nuclei will contribute with elastic scattering depending
on their local impact parameter; ~b will describe the transverse coordinate (respect to the
symmetry axis z) of the incoming γ∗ ; ~sj will describe the transverse coordinate of the

nucleus j; (~b− ~sj) will describe the impact parameter of the γ∗ respect to the nucleus j

form as:

Γγ
∗V
A (~b) =

A∑
j=1

(a)︷ ︸︸ ︷
Γγ
∗V
N (~b− ~sj)

(b)︷ ︸︸ ︷
ei qLzj

(c)︷ ︸︸ ︷
A∏

k ( 6=j)

[
1− ΓV VN (~b− ~sk) θ(zk − zj)

]
(1.6)

where (a) describes the vector meson photo-production amplitude and (c), if expanded,

expresses all the possible combinations of elastic scattering in the region z > zj . One of

the key factors for interpreting the Coherence Length effect is the phase factor (b) . qL

represents the Longitudinal part (z direction) of the difference (~k − ~k′) of the momenta of

both the photon and of the vector meson:

qL = pγ
∗ − pVL =

Q2 +M2
V

2ν
=⇒ lc =

1

qL
=

2ν

Q2 +M2
V

(1.7)

The inverse of qL represents the Coherence Length lc , because in the sum of different

terms in Equation1.6, for the region where (zj1 − zj2) < lc (where j1 and j2 represent two

indices in the sum) the production amplitudes will add coherently. Otherwise there will

be destructive interference. Considering that during the interaction the nuclear state will

change from |0 >, the ground state to |f >, the final state (different from the starting one),

one can define

dσγ
∗V
inc

d2pVT
=

∣∣∣∣∫ d2b

2π
e−i

~pVT~̇b〈f |Γγ
∗V
A (~b)|0〉

∣∣∣∣2 (1.8)
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Integrating over pVT and summing over the final states (where one will consider the com-

pleteness of the final states), one obtains

σγ
∗V
inc =

∫
d2pVT
2π

∫
d2b

∫
d2b′ei

~pVT (̇~b−~b′)
(
〈0|Γγ

∗V ∗
A (~b′) Γγ

∗V
A (~b)|0〉 − 〈0|Γγ

∗V ∗
A (~b′)|0〉 〈0|Γγ

∗V
A (~b)|0〉

)
(1.9)

where one uses the fact that in the final states the ground state is missing from the complete

set of states. Using one of the representations of the delta function

δ2(~b− ~b′) =

∫
d2pVT
2π

ei
~pVT (̇~b−~b′)

one can simplify the equation into

σγ
∗V
inc =

∫
d2b

[
〈0|
∣∣∣Γγ∗VA (~b)

∣∣∣2 |0〉 − ∣∣∣〈0|Γγ∗VA (~b)|0〉
∣∣∣2] (1.10)

As is shown in [17] , different qL(Q2) in Equation1.6 will lead to different contributions

from the Γγ
∗V
A (~b) to the cross section, thus creating a Q2 dependence in the Glauber model

as well (see figure 1-4) .

The Glauber model [25], which gives a Quantum mechanical description of the inter-

action with matter, does not mention whether the particles considered have a composite

system of quarks. For this reason the Transparency factor will be independent of the Q2

transferred by the incoming beam and its value will be constant if one subtract or otherwise

controls the Q2 dependence due to Coherence Length effects.

1.3.2 pQCD description of Color Transparency

In a hadron in high momentum transfer exclusive reactions, the fundamental part which

controls the valence quarks is called quark distribution amplitude [26]. In free space exclu-

sive processes we can express the distribution amplitude using in light cone coordinate:

φ0(xi, Q
2) =

∫ Q

d2kTψ0(xi,~k
2
T ) (1.11)

where xi is the fraction of the longitudinal momentum carried by the i-quark so that

(1− xi)p = |~kT | (where p is the momentum of the quark). The next example will describe

8



Figure 1-4: Nuclear Transparency as a func-
tion of Q2 and ν for different target mate-
rial. Highlighted in color is the kinematical
region investigated by the EG2 experiment
(see figure 1-5 on the right)

 (GeV)ν
2 2.5 3 3.5 4 4.5

)2
 (

G
eV

2
Q

0.5

1

1.5

2

2.5

3

Figure 1-5: EG2 experiment kinematical
range: 0.9GeV 2 < Q2 < 2GeV 2 and
2.2GeV < ν < 3.5GeV

how a pQCD analysis of CT can be done. We will consider the pion knockout reaction

πA → π′π′′A (see figure 1-6 ) (see Ref. [27] ). This process describes some properties of

CT well, and can be decomposed as the sum of a soft Collision (G) with an hard scattering

kernel (H) (see figure 1-6 , part (a) and equation 1.12). The hard scattering part will be

independent of the nuclear number A and of the location of the interaction inside the nuclei.

The amplitude M is given by [27]

M =

∫ ∏
i

dli

∫ ∏
j

dkj G(li, kj)H(kj , Q
2) (1.12)

where

kj = active parton momentum

li = loop momentum interaction with the participating quark spectators.

9



The first step is normally defined as “factorization”. In this stage we separate the soft

and the initial part of the interaction from H(kj , Q
2). The distribution amplitude of an

hadron that has interacted with a nucleus A (in the following I will refer to wave functions

which describe hadrons that have interacted with a nucleus with a label A, characteristic

of the nucleus) will be given by [27]:

φA(x,Q2) =

∫ Q

d2kTψA(x,~k2
T ) (1.13)

Using this formalism we can rewrite the expression of M as

M =

∫ ∏
j

dkj H(kj , Q
2) ψA(k1)ψA(k2)ψA(k′)ψA(k′′) (1.14)

This transformation in M is shown schematically with the passage from diagram (a) to

diagram (b) in figure 1-6. In part (b) of this picture the S blobs represent soft interactions

between the hadrons. These will be suppressed with respect to the other interactions, be-

cause they will be the product of the coupling of these hadrons, which are color singlets.

Anti-transforming in ~kT the quantity ψA in Eq1.13 , we can express it as a function of

the impact parameter ~bT∫
d2kT ψA(x,~k2

T )e−i
~bT ·~kT = ψ̃A(x,~b2T ) = ψ̃A(x, b) = f̃A(s, b2) ψ̃0(x, b) (1.15)

where ∼ denotes the function in coordinate space and f̃A(s, b2) is the nuclear filtering

amplitude for an interacting quark in target A of energy s and impact parameter b

f̃A = 1− F̃A (where F̃A is the scattering amplitude) (1.16)

Thus the transmitted wave is the original wave minus the scattered wave. We now have for

Eq1.13

φA(x,Q2) =

∫ Q

d2kT

∫
d2bT e

i~bT ·~kT f̃A(s, b2)ψ̃0(x, b) =

= (2π)2Q

∫ ∞
0

db J1(Qb)f̃A(s, b2)ψ̃0(x, b) (1.17)

10
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Figure 1-6: Reaction under study.

Where we have used the cylindrical symmetry around ~bT and ~kT and the definition of

the integral representation of the Bessel function.

J0(z) =
1

2π

∫ 2π

0
eiz cos θdθ ;

∫ u

0
z J0(z)dz = uJ1(u) (1.18)

The full Q dependence of this formula is given by the term QJ1(Qb), that comes only

from imposing the upper limit on ~kT . The behavior of this function is shown in figure 1-7 .

The nuclear dependence of the reaction is now entirely carried by f̃A(s, b2). Even assuming

a complicated functional behavior, that will depend on the model considered, we can still

expand f̃A(s, b2) around a known value of b. Because at b = 0 the color dipole moment of

the singlet mini-hadron will be null, it is assumed that

f̃A(s, b2)
∣∣∣
b=0

= 1 ⇒ f̃A(s, b2) ∼ 1−A1/3nb2σ′eff + .... (1.19)

where b2σ′eff , by definition, is the effective cross section and n is the average nuclear density.

Due to the selection driven by higher Q values (see figure 1-7) the only part that will count
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Figure 1-7: The dependence of |φA|2 with respect to Q and b is proportional to (QJ1(Qb))2

(here plotted). High Q will select configuration of the wave function of the quark ψ̃0(x, b)
which will be characterized by low b

of f̃A(s, b2) will be the one at b→ 0 . So for high enough values of Q we can directly see how

we can “turn off” the soft part of the interaction. Not considering normalization factors,

lim
Q→∞

φA(x,Q2) =

∫ Q

d2kTψA(x,~k2
T ) = φ0(x,Q2) (1.20)

The distribution amplitude of an hadron which has interacted with a nucleus φA(x,Q2)

for high enough Q is the same one as in free space. The only ingredients for finding this

result (which states that for high enough Q2 the nuclear medium has no action on the wave

particle) were:

• factorization,

• including filtering in the nucleus,

12



• Imposing cylindrical symmetry around ~kT ⇔ ~bT .

From figure 1-7 is also possible to understand the concept of nuclear filtering: The inter-

action favors high Q2, selecting quark’s configurations characterized by small transverse

separation. Short distance is then a statement about a dominant integration region.

Easy interaction model

y1

x2’

x 2

x1’

x 1

y2’

y2

y1’

x2’

x 2

x1’

x 1

y2’

y2

y1’

y1

x2’

x 2

x1’

x 1

y2’

y2

y1’

x2’

x 2

x1’

x 1

y2’

y2

y1’ + +

+ +

+   .......

r

s

Figure 1-8: Diagram expansion of the interaction of a quark pair (1) with spectator nucleons,
in this picture schematized as a dual quark object also (2).

One can see the simplified scheme for an example of the behavior of a quark pair’s

interaction in a nucleus in figure 1-8. The kernel of the interaction can be expanded as a

single interaction contributions between the quarks. Considering that there will be a relative

minus sign for interactions of quarks with opposite and like color charges, the kernel will

13



have the form:

K(xi, x
′
j) = V (x1 − x2)[V (x1 − x2)− V (x1 − x′2) + V (x′1 − x′2)− V (x′1 − x2)]+

− V (x′1 − x2)[V (x1 − x2)− V (x1 − x′2) + V (x′1 − x′2)− V (x′1 − x2)] + ... =

(1.21)

= {−[V (x′1 − x2)− V (x1 − x2)] + V (x′1 − x′2)− V (x1 − x′2)}2

Because we are interested in the short distance region, selected by the high Q2 of the

reaction, we can expand the kernel in Equation 1.21 for r = |x′1 − x1| → 0, giving:

K(xi, x
′
j) ∼ {r · ∇[V (x1 − x′2)− V (x1 − x2)]}2 (1.22)

This shows that the interaction is proportional to r2 for r → 0. So, a more and more Point

Like Configuration (r → 0), tuned by Q2 , will select the quark configuration that will have

a little interaction in a nucleus, giving the quark pair the possibility to pass trough many

fermis of matter, in other words Color Transparency. We will see that a more detailed

analysis using pQCD, will express the matter more rigorously.

1.3.3 Kopeliovic model

As indicated by Feinberg and Pomeranchuk [28] and by Good and Walker [29] , more

that theirs own energy and mass, one quantity that will affect the single particle states

time evolution of quarks’ combinations is the energy difference of states with the same

momentum Pz. In the ultra-relativistic limit (considered in the z direction),

E1 =
√
m2

1 + p2 ∼ pz

√
1 +

m2
1

p2
z

∼ pz(1 +
1

2

m2
1

p2
z

)

E2 =
√
m2

2 + p2 ∼ pz

√
1 +

m2
2

p2
z

∼ pz(1 +
1

2

m2
2

p2
z

)

 E1 − E2 ∼
m2

1 −m2
2

2 pz
(1.23)

In defining consistently the Transparency phenomena it is important to define rigorously

the time evolution of the quark pair that will compose the virtual meson in the final state.

As shown by Kopeliovic and others in [30] [31] [32] [33] in the interaction of a virtual photon

in a nucleus one could discern between

14



Figure 1-9: Space-time schematic of the production of a ρ0 from the interaction of a γ∗ with
a nucleus. The process can be described in 2 different ways: (a) The creation time (τp) is
much smaller than the interaction distance (the circular blob) ; (b) it exceed the nuclear
radius. This difference leads to a different description of the transparency factor

• Production time, the time in which the γ∗ will oscillate creating a quark-antiquark

pair that will interact with the nucleons,

• Formation time, the time it takes the quark pair, after the nuclear interaction, to

reach a stable hadronic condition.

The Transparency factor, as shown in figure 1-9, will depend on the characteristics of the

virtual photon, giving its ability to trigger different time scales for the spectator target.

If the production time (τp) is smaller than the nuclear radius, the transverse (respect to

the direction of the qq̄ system) evolution of the pair will have similar time scale to the

nuclear target, and so will be influenced from it. Changing phase space, also its transverse

momentum will be affected by it. In the opposite case of τp >> RNucleus, the transverse

property of the qq̄ will be mostly “frozen” during the passage in the nucleus, and so the

effect of the medium will be only a simple attenuation factor. If one is using a functional

integral representation, the evolution operator of the qq̄ system can be schematized as an

attenuation factor of the form [30]

exp

{
−1

2

∫
dl σ(τT ) ρA(~r)

}
(1.24)

where τT represent the transverse distance between the quarks of the virtual meson

traveling into the nucleus. The evolution operator, calculated in the Laboratory Frame,

will be of the form [30]:

U =

∫
D3τ exp

{
i

∫
dtLeff (τ, τ̇ , t)

}
(1.25)
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where Leff is the effective Lagrangian and will be defined as:

Leff (τ, τ̇ , t) = L(τ, τ̇) + i
γv

2
σ(τT ))ρA( ~r(t)) (1.26)

The Lagrangian of the quark, anti-quark is then close to the one of an harmonic oscillator

L(τ, τ̇) =
µτ̇2

2
− µω2τ2

2
(1.27)

that is driven in this model by the interaction in the nuclei using the second term in

Equation1.26. µ is the reduced mass of the system and ω is connected to the formation time

of the virtual meson. Using some approximation, valid for τT << 1, one can approximate

the cross section σ(τT ) to a term proportional to τ2, so that it can be absorbed in the

frequency term.

ωT =
[
ω2 − iδ(~r)

] 1
2 (1.28)

If one considers the nuclear density as a multistep function, the value of δ(~r) is “frozen” at

every step to the value assumed at a certain time. One can then reconstruct the evolution

operator from the multistep function.

U(tn+1) = U(tn+1 − tn)U(tn) (1.29)

In this way the problem simplifies because at every single step the evolution operator cor-

responds to the one of an harmonic oscillator at constant frequency (see for example [34])

< y|U(t)|x >=

[
µω

2πi sin(ωt)

] 1
2

exp

{
iµω

2 sin(ωt)
[(y2 + x2)cos(ωt)− 2xy]

}
(1.30)

One can thus completely determine the evolution operator, solving the multistep system

obtained from Equation 1.29 , using the completeness relation 1 =
∑

z |z >< z| and doing

the integral

< y|U(tn+1)|x >=

∫
dz < y|U(tn+1 − tn)|z >< z|U(tn)|x > (1.31)

1.3.4 L. Frankfurt, G.A. Miller, M. Strikman Model

Another approach used for testing the Color Transparency effect is a model developed by

L.Frankfurt, G.A.Miller, M.Strikman [2], that, from a basis created using the Glauber pic-

ture, adds the interaction particular of quarks in a Point Like Configuration. With this
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approach the physical hadron limit, well described by the Glauber model, comes straight-

forward. First we separate the two contributions to the total scattering (see figure 1-2 and

1-3):

• ρ0 meson photoproduction from a single nucleon (where t = −q2 is the momentum

transfer with the nucleon and t0 is the minimum possible value assumed by t for this

reaction. For the definition of t see equation 3.11 and 58)

dσγ
∗V

dt
=

[
dσγ

∗V

dt

]
t=t0

e(−B1q2) (1.32)

• Elastic rescattering of the already created vector meson

dσV V

dt
=

[
dσV V

dt

]
t=0

e(−B2q2⊥) =
σ2
tot

16π
(1 + α2)e(−B2q2⊥) (1.33)

This parametrization is useful because it enhances the role of the cross section dependence

on the momentum transfer with the target. We can now assume that the full cross section

will be given by the sum of all the possible different number of elastic rescattering (n in

equation 1.34). from this will follow the definition of the nuclear transparency TA in this

description:

dσ

dt
=

∞∑
n=0

dσn
dt

=⇒ TA =
dσ
dt

Adσγ∗V

dt

=

∞∑
n=0

dσn
dt

Adσγ∗V

dt

=

∞∑
n=0

Tn (1.34)

Glauber picture

The starting picture of this model is based on the Glauber theory. If one considers the

contribution with no elastic rescattering to the cross section one find

dσ0

dt
=

(a)︷ ︸︸ ︷
A
dσγ

∗V

dt

∫
d2b

∫ ∞
−∞

dz ρ(b, z)

(b)︷ ︸︸ ︷
(1− σtotT (b, z))A−1

(1.35)

T (b, z) =

∫ ∞
z

dz′ρ(b, z′) ,where ρ(b, z) =
ρ0

1 + e

√
b2+z2−R

a

and

∫
d2bT (b,−∞) = 1.

(1.36)
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In equation 1.35 the part (a) represents the sum of all the possible contributions for scatter-

ing a Vector meson from a γ∗ in a target with density given by ρ(b, z′) (where, in equation

1.36, R = 1.1A
1
3 is the nuclear radius); part (b) refers to the probability of not having an

elastic rescattering (1 − σtotT (b, z)) from all the remaining nucleons (A − 1) starting from

the point of the vector meson’s creation z.

If one considers now the case where a single elastic rescattering occurs, one obtains:

dσ1

dt
=

(a)︷ ︸︸ ︷
A

[
dσγ

∗V

dt

]
t=t0

(b)︷ ︸︸ ︷
(A− 1)

[
dσV V

dt

]
t=0

(a)︷ ︸︸ ︷∫
d2b

∫ ∞
−∞

dz ρ(b, z)

(b)︷ ︸︸ ︷
T (b, z)

(c)︷ ︸︸ ︷
(1− σtotT (b, z))A−2×

×

(d)︷ ︸︸ ︷∫
d2q1

π

d2q2

π
δ2(~q1 + ~q2 − ~q)

(a)︷ ︸︸ ︷
e−B1q21

(b)︷ ︸︸ ︷
e−B2q22 (1.37)

In equation 1.37:

(a) Refers to the production of the Vector meson;

(b) Is related to all the possible (A − 1) single elastic rescattering from the point z of

creation of the meson ρ0;

(c) Describes the probability that no other elastic rescattering occurs;

(d) Integrates over all possible perpendicular momentum transfers between the two pro-

cesses that gives the same total momentum transfer with the nucleus ~q = ~q1 + ~q2 (where

|~q|2 = −t).

In order to understand the momentum constraint in (d), we need to see how we experimen-

tally determine t in the reaction under study (see figure 3-1 at page 48 and equation 3.11).

In the first order approximation at the kinematical energies used in the EG2 experiment, t

describes the interaction with a nucleon N as showed in figure 3-1 (designed with the term

dσ0/dt in equation 1.35). The terms with elastic rescattering (dσ1/dt, dσ2/dt , · · · ) enter

into the correction to the Transparency (see figure 1-10). Considering that t is derived from

the difference of the detected ρ0’s momentum (after it passes through the nucleus) with the

momentum of the virtual photon, t will carry the information of all the interactions with

the target (creation of the vector meson and all the possible elastic combinations).
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Figure 1-10: Glauber model calculation as a function of σtot = σ for the different contri-
bution to the Nuclear Transparency TA as defined in equation 1.34 [2]. In black is shown
the contribution due to T0 (equation 1.35); Dashed in red is the one from T1 (equation
1.37); Dashed in chan is T2. The solid blue line on the top represent the sum of the 3 terms
T = T0 + T1 + T2. T0, the contribution to the Nuclear Transparency due to the possibility
of no elastic rescattering, is the leading term at these energies.

Treatment of the ρ0 decay

This model was also implemented with the effects of ρ0 decay inside the nucleus into a

π+, π− pair: This will modify the second step of the interaction with the target when, after

being created, the vector meson propagates through the nucleus. For this reason, in this

step, the cross section σtot needs to be replaced:

σtotT (b, z) →
∫ ∞
z

dz′ ρ(b, z′) σ̂(z′ − z) (1.38)

where :

σ̂(z′ − z) = σtot exp

− Γρ0mρ0√
ν2 −m2

ρ0

(z′ − z)

+ 2σπN

1− exp

− Γρ0mρ0√
ν2 −m2

ρ0

(z′ − z)


(1.39)

In equation 1.39 the cross section is divided in two parts, both weighted with the decay rate

for the ρ0 boosted in its system frame, (Γρ0mρ0/
√
ν2 −m2

ρ0
) : Both the decay rate and so

the cross section for the produced π+ π−, are proportional to the distance traveled from the

creation of the vector meson (z′ − z). This effect produces a rise in the measured Nuclear
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Transparency that at its maximum is ∼ 5% for low ρ0 meson energies. It is then important

to include this calculation in the theoretical prediction of this data-set.

Implementation with Color transparency

From this Glauber model developed as a basis, One needs to add the effects due to Color

Transparency. One will expect two different effects if one checks the structure of the cross

section (see equation 1.34 ).

• The contribution in the first term in the sum (dσ0/dt) will be enhanced. This part

takes into account all the processes characterized by the creation of the vector meson

without any elastic rescattering.

• In correspondence to a reduced interaction with the rest of the nucleus, the values of

the higher order terms (in nth ρ0 rescattering) are expected to shift to the lower order.

This approach, developed by Frankfurt and Strikman, adds two other steps to the picture

of equation 1.39. The cross section σtot of the created vector meson will be substituted by

an effective cross section σeff . If one also considers the effects due to the ρ0 meson’s decay

(where for simplicity it is assumed that the momentum of the vector meson will be equally

divided between its decay’s products) one has

σDeff (z′ − z, pρ0) =σtot(pρ0)

[(
n2 < k2

T >

Q2
+
z

lh
(1−

n2 < k2
T >

Q2
)

)
θ(lh − (z′ − z))

]
+ σtot(pρ0)

[
θ((z′ − z)− lh) exp

(
−

Γρ0

γpρ0
(z′ − z)

)]

+ 2σπN (
pρ0

2
)

[
θ((z′ − z)− lh)

(
1− exp

(
−

Γρ0

γpρ0
(z′ − z)

))]
. (1.40)

In equation 1.40 lh = 2pρ0/∆M
2 sets the time scale of the evolution of the created Point

Like Configuration to the final Vector meson. Schematically, one can explain this equation

with the following sequence:

1. A Point Like Configuration is created with cross section σPLC = σtot(pρ0)
n2<k2T>

Q2

(where n = 2 is the number of quarks involved and < k2
T >

1/2' 0.35GeV ). This will

be altered by the Q2 of the reaction.
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2. The quark pair evolves linearly from the starting low interaction state to the full

vector meson in a time/space scale determined by lh ( and so does the cross section,

see figure 1-11 ). All this happens in the shell described by the relation (z′ − z) < lh.

3. Outside this shell ( θ((z′ − z) − lh) ) the vector meson will start to decay and the

cross section will be described with the sum of both the ρ0 part and the two pion part

(which for simplicity has been taken with the same momentum fraction pρ0/2).

z’z

PLC

to t

l
h

Figure 1-11: Cross section evolution in space from the creation of a Point Like Configuration
(σPLC) to the creation of the final vector meson as described in equation 1.40

1.4 Previous data

For more than 20 years many experiments have been searching for the detection of the

Color Transparency effect. The first experiment searching for Color Transparency was

performed at BNL [3] (see figure 1-12 ). The Transparency factor defined for this experiment

increased as expected with the beam momentum, following the theoretical prediction of

Color Transparency. After a peak for effective proton’s momentum around 10GeV/c , it

started to decrease to values comparable to those of the Glauber Model. This behavior was

explained by J.P. Ralston and B. Pire [6], interpreting the proton-proton elastic scattering
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in a nuclear target as an interference between two perturbative processes: The one giving

rise to Color Transparency and the contributions of Landshoff-type diagrams [35] (which

dominate at high energy).

Figure 1-12: Large angle Quasielastic proton-proton scattering from different nuclear tar-
gets is compared to proton-proton scattering in hydrogen at 3 different proton momenta
(6, 10, 12GeV/c) [3]. The Nuclear Transparency increases untill the effective beam momen-
tum energy of 10GeV/c and then decreased. This behavior raised some question about the
quality of the event selection (the measurement involved momentum analysis of only one
of the two final-state protons), but was later confirmed by two different measurements by
Mardor [4] and Leksakov [5] using the EVA detector at the Brookhaven AGS. Was then
explained by J.P. Ralston and B. Pire [6]

To avoid this problem of interference between the Color Transparency phenomena and

other processes, many experiments have been done studying a quasi-free e, e′, p reaction

(at Bates [7], at SLAC [8] [9] and at Jefferson Lab [10] [11], see figure 1-13 ). All these

experiments seem to follow the Glauber description of the interaction with matter, failing

to find a hint for Color Transparency.

The first experiment that showed a clear signal of Color Transparency was performed

at FNAL [36] where the relative cross sections for diffractive dissociations into dijets of

500GeV/c pions scattering from carbon and platinum was measured. The cross section,

if parametrized as σ = σ0A
α , gives a result of α ∼ 1.6. The observed A dependence is
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Figure 1-13: The quasi-free e, e′, p reaction has been studied at several facilities with a Q2

range of 0 − 9(GeV/c)2. Here are the results from Bates (for this experiment the data
points refer from top to bottom respectively to Carbon, Nickel and Tantalum), [7],from
SLAC [8] [9] and from Jefferson Lab ([10] (1)) ([11] (2)). The theoretical curves using
Glauber calculations (solid curves from [12], dashed curve from [13]) predicts the experi-
mental behavior well, indicating that all these experiments lack the expected increase due
to Color Transparency

consistent with calculations with Color Transparency models and is very different from the

one expected from inclusive π − nucleus scattering ( σ ∝ A2/3 ). This implies that the

coherent scattering of the qq PLC as predicted by Color Transparency was observed .

Another experiment that showed results consistent with the Glauber calculations which

include Color Transparency was performed at the Thomas Jefferson Laboratory facility

(in Hall A [14], see figure 1-14 and 1-15). This experiment used pion photoproduction to

study the process 4He, ( γ n → p π− ) at θπcm = 70◦ and 90◦. It showed an increase in the

transparency with a corresponding increase in the squared momentum transfer |t|: This

result is more evident with the data with θπcm = 90◦, because it targets higher |t| (see figure

1-15).

Also using the high intensity electron beam of the Jefferson Laboratory facility (but this time
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Figure 1-14: Nuclear Transparency for 4He
[14] as a function of the momentum transfer
square |t| for θπcm = 70◦. Theoretical pre-
diction of a Glauber model calculation and
a Glauber model with CT are also shown.

Figure 1-15: Nuclear Transparency for 4He
[14] as a function of the momentum transfer
square |t| for θπcm = 90◦. The shaded regions
show predictions from a Glauber model with
and without CT effect.

in Hall-C) another experiment used Pion electroproduction for studying Color Transparency

[15]. The reaction ( γ∗ p → nπ+ ) was investigated on 2H,12C,27Al,63Cu and 197Au over

a Q2 range of 1.1 to 4.7(GeV/c)2. The Nuclear Transparency and the parameter α (that

is also dependent on A) were then plotted as a function of Q2 and compared to different

theoretical models (see figure 1-16 and 1-17).

1.4.1 Exclusive ρ0 production

Exclusive electroproduction of vector mesons such as the ρ0 was suggested as a bench test

for finding Color Transparency. The size of the vector meson, controlled by the virtuality

of the photon, could also reach values below the normal hadron for modest Q2 values: In

fact, the transverse separation of the qq pair (∼ 2~c/Q) at a Q2 ∼ 2GeV 2 is calculated to

be around 0.3fm, much smaller than its normal size (∼ 1fm) [16]. The first experiment to

study the Color Transparency effect in exclusive ρ0 electroproduction was an experiment

using the Fermilab Tevatron muon beam at the energy of 470GeV [16] (see figure 1-18 and

1-19 ). The rise of the Nuclear Transparency with Q2 did not have the statistical precision
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Figure 1-16: Nuclear Transparency T is defined as ( Ȳ
ȲMC

)A/(
Ȳ

ȲMC
)H vs Q2 for different

target combinations[15]. The model used for interpreting the data are: Glauber model
(solid red line), Glauber model + CT (dashed red line), Glauber model including Short
Range Correlations (blue dot-dash line), Glauber model including SRC + CT (blue dotted
line). The dark band in the bottom right panel represents the model uncertainties and is
common to all targets.

needed to fully determine the experimental sight of Color Transparency.

Another data-set that used exclusive incoherent ρ0 production was the HERMES ex-

periment, which used the 27.5GeV HERA positron storage ring at DESY [37] with 1H

and 14N targets. The kinematical range of the virtual photon (0.8GeV 2 < Q2 < 4.5GeV 2

and 5GeV < ν < 24GeV ) was such to trigger coherence length effects, as shown in figure

1-4 and figure 1-20. The coherence length is defined as lc = (2ν)/(M2
ρ0 + Q2) and this

experiment covers a range from lc ∼ 1fm to 6fm. To disentangle the coherence length

signal from the one of Color Transparency, coherence length bins of 0.1fm were used [19].

The Transparency is defined as the ratio of the nuclear cross section per nucleon to that

on the proton, T = σA/(Aσp). The results are shown in figure 1-21. An increase in the
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Figure 1-17: The value of α obtained from T = Aα−1 is plotted here vs Q2[15]. The red
solid curve represents the theoretical calculation of the Glauber model, the dashed red one
Glauber represents + CT, the blue dotted one represents Glauber + CT + Short Range
Correlations. The value of α obtained from pions nucleons scattering data is α ∼ 0.76 and
is plotted as the gray hatched band.

Transparency TA with an increase in Q2 for each of the coherence length bins will be a

signal of Color Transparency. For this reason TA was parametrized as a linear function in

Q2, TA = P0 + P1Q
2. A fit was done in each lc bin, the parameter P1 being common to all

the bins. The results shows P1 = (0.089± 0.046± 0.020)GeV −2.
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Figure 1-18: The Transparencies T = σA/Aσ0 (where σA = σ0A
α) for the experiment E665

at Fermilab [16]: Here the data respectively of ρ0 electroproduction off hydrogen, deuterium,
Carbon, Calcium and Lead is plotted versus A for three different bins in Q2. The three sets
of points have been multiplied by ×2.0 (Q2 > 3GeV 2), ×1.0 (0.4GeV 2 < Q2 < 3GeV 2),
×0.5 (Q2 < 0.4GeV 2). The α found in the fit is then plotted in the lower picture as a
function of Q2( A value of α = 1 will indicate full transparency) : Color Transparency will
imply a Q2 dependence for the parameter α in kinematical range of this experiment. The
error here are just statistical.
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Figure 1-19: Nuclear Transparency ratio for incoherent ρ0 muon-production vs. Q2 [16].

Figure 1-20: The Transparency TA is plotted here as a function of lc. The data in blue refers
to the HERMES data-set and shows how this experiment was right on the kinematical range
where the Coherence Length effect is more important. The dashed line is the theoretical
prediction using a Glauber model from Hufner et al. [17] and interprets the physical behavior
well. This plot also shows a comparison with previous measurements with photon (red
diamonds) [18] and muon beam (the Fermilab experiment E665, pictured with cyan circles).
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Figure 1-21: Nuclear Transparency as a function of Q2 in different coherence length bins
of 0.1fm for incoherent ρ0 electroproduction on Nitrogen [19]. A fit TA = P0 + P1Q

2 was
used in each lc bin, the parameter P1 being common to all the bins. This permitted a
better definition of the slope of the Transparency vs Q2, phenomena that is due to Color
Transparency. The slope was found to be P1 = (0.089± 0.046± 0.020)GeV −2
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Chapter 2

EXPERIMENTAL APPARATUS

AND DATA ENSEMBLE

The Thomas Jefferson Accelerator Facility (TJNAF) is the site of a recirculating linear

electron accelerator, capable of delivering beams to three experimental Halls simultaneously.

These three Halls are designed to target different physics. While Hall A and Hall C have

high resolution spectrometers that are able to determine the momentum of a particle with

an accuracy of ∼ 10−4, Hall B uses a Large Acceptance Spectrometer that has a very wide

solid angle range, but is characterized by a lower resolution (∼ 5− 10× 10−3).

2.1 Continuous Electron Beam Facility (CEBAF)

The Jefferson’s Laboratory’s CEBAF (Continuous Electron Beam Accelerator Facility) is

a pair of antiparallel superconducting radio-frequency linacs (see figure 2-1) joined by two

180◦ arcs with a radius of 80 meters [38]. The linacs consist of 320 superconducting radio-

frequency cavities that boost the beam with radio-frequency waves (see figure 2-2). The

recirculating arcs are composed of five separate beam line sections, which permit the beam

to recirculate in both linacs up to 5 times. For each linac the gain in energy varies between

0.4GeV to 0.6GeV , giving a final pick energy that could reach ∼ 6GeV .
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Figure 2-1: TJNAF Accelerator configuration

Figure 2-2: Schematic of a superconducting radio-frequency cavity: As the electron moves
in the right direction the field’s induced charge on the surface of the cavity change so that
the moving particle sees an electric field that keeps on accelerating it

2.2 The CLAS detector

CLAS detector has solid angle coverage of near 4π and is capable of detecting charged parti-

cles with polar angles from 8◦ to 140◦ . Because it requires different detectors combinations,

the coverage for neutral particles is from θ = 8◦ to 75◦. CLAS is well suited for experiments

that require the detection of two or more particles in the final state, because it connects the

polar angle range with the full azimuthal coverage. Detectors stability and data acquisition

limit the luminosity up to values typical of the configuration of the experiment. For Hall B

and the CLAS detector, the electron beam can reach currents in the order of few nA, which

corresponds to luminosity ∼ 1034cm−2s−1 . CLAS in composed of several sets of detectors

(see figure 2-3), and is designed to accurately measure the momentum, time-of-flight and
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trajectory of particles from a reaction target. These measurements allow the identification

of the mass, charge and momentum of each particle.

Figure 2-3: The CLAS detector and its components

2.2.1 Main Torus and Mini Torus Magnets

The Main Torus Magnet consists of six superconducting coils positioned in a toroidal ge-

ometry (see figure 2-4). The coils are placed perpendicular to the incoming electron beam

and they separate the CLAS detector into six parts, described as sectors. The coils create

a toroidal magnetic field that is mostly constant around the φ-direction, giving an az-

imuthal symmetry to the CLAS detector. The magnetic field induces for charged particles

a curvature in the θ direction (see figure 2-6 and 2-7). This curvature, analyzed with the

information given by other detectors, enables us to determine the momentum and mass of

a particle.
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Figure 2-4: The Torus magnet. One can see
a picture of one of the coils during construc-
tion on figure 2-5

Figure 2-5: Construction of the coils of the
Torus magnet

The field’s geometry is specifically designed to provide good momentum resolution for

charged particles emitted with high energies and small scattering angles, and for particles

emitted at lower energies and large scattering angles.

The magnet is ∼5 m in diameter and 5 m in length (see figure 2-5). The coils consist of

4 layers of 54 turns of aluminum-stabilized NbTi/Cu conductor. To keep the coils at a

superconducting temperature (∼ 4.5K), cooling tubes with recirculating liquid helium sur-

rounds the magnet. The field created reaches 2.5Tm at a current of 3860 A , in the forward

direction, and drops to 0.6 Tm at scattering angle of 90◦. However, routine operation has

limited operation to 87% of the maximum current (3375 A ) to keep internal mechanical

stresses within safe limits. The direction of the current in the coils can be inverted, caus-

ing also a reversal in magnetic field. This permits to have a choice on which ensamble of

particles (positives or negatives) will have curvature in-bending or out-bending (respect to

the incoming beam direction, axis of symmetry of CLAS).

The Mini Torus is another magnet used in CLAS (see figure 2-8). Placed, between the tar-

gets and the first region of Drift Chambers, reduces the background produced by scattered

Möller electrons.
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Figure 2-6: The Torus magnetic field inside
the CLAS detector

Figure 2-7: Magnetic field intensity distri-
bution

2.2.2 Drift Chambers

The Drift Chambers (DC) [39] are the first detector elements encountered by the particles

after scattering from the designed target. The Drift Chambers, as part of CLAS is divided

in six sectors. Each of the six sectors has three drift chambers at increasingly larger radial

distances from the center of CLAS , for a total of 18 separate drift chambers. The DC can

track particles with a range in θ = 8◦−142◦ with a precision of 2mrad and determine their

momentum if > 200MeV/c with an a resolution of 0.5%.

Region 1 (R1) (see figure 2-3) is the closest to the target and is characterized by the smallest

magnetic field (see figure 2-6). Moving forward from the center of CLAS we found Region 2

(R2) which, being in the middle of the coils, is characterized by the highest magnetic field.

Outside the torus magnet is positioned the last part of the DC , Region 3 (R3).

The tracks are measured with an accuracy of 100µm in the bend plane (containing the

beam line) and 1mm in the direction perpendicular to the bend plane. In order to obtain

track redundancy and increase pattern recognition each of the chambers is divided into two

superlayers. The difference between the two superlayers is that one has wires axial to the
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Figure 2-8: Mini Torus magnet in CLAS

magnetic field and the other has its wires tilted of 6◦ . Each superlayer is composed by six

layers of drift cells (R1, being the smallest one, is constituted only of four layers). In total

the number of cells that compose the DC detector is 35,000. Figure 2-9 shows a typical

track pattern. The shape of each cell is the one of an exagon. A signal wire lies at their

midpoint and field wires are positioned at the verteces. There are guard wires at the edges

of the chambers held at a high voltage intended to mimic an infinite grid of drift cells.

The drift chambers are filled with a typical ionization detector gas mixture of Argon−CO2

in a 9:1 ratio that provides a saturated drift velocity of 4cm/µs. In order to full determine

the position in the Drift Chambers and so improving their resolution, the drift time for each

channel must be known. This value will need to be determine each time the environmental

conditions (such atmospheric pressure, humidity, etc.) in the experimental hall will change

because this will influence the Drift Chamber’s gas properties. The signal in the Drift

Chambers also depends on the particles entrance angle and velocity and the local magnetic

field. The drift time to drift distance function for a given entrance angle is parametrized

using:

x(t) = v0t+ η

(
t

tmax

)q
+ k

(
t

tmax

)p
(2.1)
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Figure 2-9: Drift chambers track

where tmax is the maximum drift time and v0 is the value for the saturated drift velocity

near t = 0. The remaining parameter will be determined using a minimization process on

χ2 =
|x(t)− xpath|2

σ2
path

(2.2)

where xpath represents the Distance Of Closest Approach (DOCA) from the sense wire along

the path and σpath is its error. Another quantity used to monitor the calibration of the

Drift Chambers detector is the residual, defined as

|x(t)− xpath| (2.3)

For a better result and so testing that the minimization procedure found the right answer in

this nonlinear fit, it is still important to control the physical behavior of all these variables

(An example of the values measured for σpath can be found in figure 2-10). The CLAS Drift

Chambers Region 3 were also pulled out for maintenance during the experiment running

time. This required an alignment of this Region with the rest of the detector. Straight
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Figure 2-10: DC σpath for different Superlayers for the azimuthal angle which characterizes
sector 1. The cell size of the Drift Chambers is increasing with the Superlayer, giving also
an increase in the expected value of σpath (as also seen in this plot).

track electrons were taken (where the main Torus current was set to 0A) and a previous

procedure [40] was used to find the final desired alignment (see figure 2-11).

2.2.3 Forward Electromagnetic Shower Calorimeter

The forward electromagnetic shower calorimeter of CLAS (EC) has scattering angles which

range from θ = 8◦ to θ = 45◦ with the corresponding azimuthal coverage of the Drift

Chambers (see figure 2-13 ) [41]. For angles 50◦ < θ < 75◦, there is a second detector,

called Large Angle Calorimeter, that is constituted of 2 modules (for its description see

[42]). The main functions of the EC in CLAS are:

• electron and photon energy resolution σ
E ≤

0.1√
E

where (E is expressed in GeV )

• position resolution δr ≈ 2cm at 1GeV

• pion electron rejection greater than 99% for E ≤ 1GeV

• fast (< 100ns) total energy sum for events trigger

• mass resolution for two photon decays δm
m ≤ 0.15
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Figure 2-11: Final alignment for the Drift Chambers Region 3. Here Is plotted the residual
(X) as a function of the layers in the Drift Chambers(Y) integrated in all the CLAS angle.

• neutron detection efficiency > 50% for neutron with energy > 0.5GeV

• time of flight resolution ≈ 1ns.

For energies in the GeV range, photons lose the main part of their energies in e+, e− pair

production. Unlike them, electrons and positrons lose it emitting bremstrahlung radiation

while changing their momentum. Both these processes create photons that will cause an

electromagnetic shower which will be detected using scintillators. Heavier particles (such as

pions), due to their bigger inertia, will lose the main part of their momentum by ionization

(for particle’s energies at which CLAS operates). This signal is distinctly different respect

to the electromagnetic shower given by γ , e+ and e−. This feature becomes very important
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for high energy pions, because if their momentum is > 2.5GeV the use of the Cerenkov

detector for discriminating pions and electrons becomes more challenging (pions start also

to emit light in the Cerenkov detector). For better match the hexagonal geometry of CLAS

the electromagnetic shower calorimeter is made of alternating layers of scintillators and

lead sheets with the shape of an equilateral triangle. Each scintillator layer is made of 36

strips parallel to one of the sides of the triangle. Moving one after another in the following

scintillator layers, the strips will rotate 120◦ each time , mapping the charge deposited

distribution in the three dimensions. The three different orientations of views parallel to

each side of the EC triangle (see figure 2-13), define 3 planes labeled u,v,w. The total

number of layers is 13 and they are divided in two groups of 5 layers (inner) and 8 layers

(outer) for giving also longitudinal information of the energy deposited by the particle.

Figure 2-12: Example for one sector of the
definition of three different planes of ob-
servation (u, v, w) for the Electromagnetic
shower Calorimeter

Figure 2-13: Electromagnetic shower
Calorimeter example of track reconstruc-
tion. One can also see the six sectors
structure, that follows the same azimuthal
behavior of the Drift chambers (see figure
2-3)
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2.2.4 Cerenkov Counters

The main use of the Cerenkov Counters (CC) is to discriminate between electrons and

pions [43]. A Cerenkov detector is sensitive to the light that is emitted in a medium when

a charged particle travels faster than the material’s characteristic speed of light. In the

CLAS detector the CC has a polar angle range of θ = 8◦ to θ = 45◦ with full azimuthal

angle coverage (in correlation with the reach of the other detectors). This is achieved

by covering as much space as possible with mirrors and placing light-collecting cones and

photomultiplier tubes (PMTs) in the regions of φ that are obscured by the toroidal magnet

coils (see figure 2-15).

Each of the six sector is divided in 2 regions in the azimuthal direction and then branched

in 18 blocks in the polar direction. This gives a total of 216 light collecting modules, which

consist of two focusing mirrors, a Winston light-collection cone with a PMT mounted at

its base as well as a cylindrical mirror at the base of each cone (see figure 2-15). The

Figure 2-14: Cerenkov detector in CLAS. Here is shown a picture of its structure in each
sector

reaction at the center axis of CLAS are characterized by cylindrical symmetry. Adding

also the fact that the bending induced by the magnetic field from the Main Torus will just

affect the polar angle of the trajectory, one can consider that the trajectories of the charged

40



particles lie approximately in planes of constant φ. From these considerations we can see

how placing the PMTs in the shadows of the magnetic coils does not directly influence the

angular coverage. T he CC is designed to just involve the azimuthal direction in order to

not affect the polar angle information of the track.

Figure 2-15: Cerenkov detector mirrors and light collecting scheme

2.2.5 Time of Flight system

In the CLAS detector, particle identification is obtained mainly combining the track/momentum

data from the Drif Chambers with the information from the Time Of Flight (TOF) sen-

sor. This detector consists of a group of scintillators positioned after Region 3 of the Drift

Chambers, in the area between the Cerenkov detector and the Electromagnetic calorimeter,

with a polar coverage of ∆θ = 134◦ and full azimuthal extension(see figure 2-3). The scin-

tillators are oriented approximately perpendicular to the track of the scattered particle [44].

To avoid influencing the tracking, like for the Cerenkov detector, the not active parts of the

TOF are placed in the regions obscured by the magnet coils. There are 288 scintillators

counters 5 cm thick. The forward counters are 15 cm wide and the large angle counters

are 22 cm wide, giving an angular coverage of ∼ 2◦. Their length varies varies from 32

cm at the most forward angle to 450 cm at the large angles (see figure 2-16). The time

resolution changes with the angle θ respect to the incoming beam line: It ranges from 120ps
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for θ < 90◦ to 250ps for angles θ > 90◦.

Figure 2-16: Time of flight detector in CLAS

2.2.6 EG2 Targets

The Eg2 experiment used two targets simultaneously to reduce the systematic error in

measurements, as the Nuclear Transparency, that involved comparison of data from both the

targets. The first target seen by the beam is the cryogenic liquid target (in this experiment

was used liquid hydrogen and deuterium) 2cm long. The second target is a solid target of

radius of 1.5mm (see table 2.1 and figure 2-17, 2-18).

Material

Fe C Al (1) Al (2) Pb Sn

Thickness (mm) 0.4 1.723 0.580 0.015 0.14 0.312

Table 2.1: Different solid targets used for the EG2 experiment are shown with their relative
thickness
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Figure 2-17: EG2 solid
target holder

Figure 2-18: EG2 target holder. In blue is highlighted the
liquid target; In red the solid target

2.3 Data Acquisition

When an event satisfies a particular trigger condition, the data from all the different de-

tectors is recorded by the Data Acquisition (DAQ). For experiment as EG2, characterized

by electron scattering, the signal that gives the trigger to the DAQ is the detection of an

electron in the final state. This requirement is given by a contemporaneus hit in the Elec-

tromagnetic Calorimeter and in the Cerenkov detector above a selected threshold (Level 1

trigger).

A diagram that shows the structure of the DAQ system is shown in figure 2-19. After

passing the pre-trigger discriminator, the signal from the detector is sent to the Level 1

trigger, that contains the information on the threshold requested in the experiment. The

Level 2 trigger includes information from the Drift Chambers, but was not used in the EG2

experiment. When the requirements from Level 1 are passed. the information is sent to the

Trigger Supervisor, which communicates with 17 Read-Out-Controllers (ROC). The data
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Figure 2-19: Schematic Diagram for the Data Acquisition system

here is then read and converted into digital information and sent from the ROC memory to

the Event Builder (EB). From here the Data Distribution (DD) the events are sent to the

on-line monitoring system and to the Event Recorder. In the on-line monitoring the data

is checked doing a fast analysis on the event and studying the structure of the information

given by each detector (for example checking for symmetries in the amount of data received

from each sector of CLAS). The recording of the data is done in two steps: Firstly is written

on a local disk (where one can do other monitoring that requires higher statistic) to be later

transferred into tape at the data mass storage system of Jefferson Laboratory.
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2.4 The data ensamble in the EG2 run

The Color Transparency search E02-110 [45] was part of the EG2 experiment and run in

parallel with another research lead by W. Brooks E04-104 [46]. After a successful commis-

sioning run in the summer of 2003 with a beam energy of 4.7 GeV, the targets of the EG2

experiment were moved backward respect to the center of the CLAS detector for having a

better acceptance of negative charged particles. This movement restrict the forward solid

angle not covered by the detectors, increasing the counts for the negative particles, that in

the magnetic field used are bending towards the central axis of CLAS. The new position of

the targets was z ∼ −30cm for the Liquid one and z ∼ −25cm for the Solid one. The full

data taking resumed in December 2003 for going through March 2004. The down time in

Autumn 2003 was caused by the hurricane Isabel that affected the area around the Tomas

Jefferson Laboratory. This affected also the possible Q2 range of the experiment, because

the hurricane had an impact on the efficiency of many of the cavities of the continuous

electron beam. For this reason the highest energy possible for the beam shifted from the

expected ∼ 6GeV to ∼ 5.5GeV . The full data-set consists of measurement of different

target combinations at different energies. For a complete description of the experimental

data obtained see table 2.2 and 2.3.
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Beam Energy Liquid Target Solid Target Number of events

4.0 GeV

2H
Fe ∼ 538.27 M

C ∼ 9.16 M

empty
Fe ∼ 0.40 M

Al (1) ∼ 12.35 M

C ∼ 17.93 M

4.7 GeV

2H
Fe ∼ 48.21 M

Pb ∼ 94.82 M

None ∼ 7.97 M

empty
Fe ∼ 0.80 M

Pb ∼ 0.40 M

None ∼ 1.59 M

H2

Fe ∼ 14.74 M

Pb ∼ 111.96 M

None ∼ 0.80 M

Table 2.2: Different targets configuration used (see Table 2.1 for reference of the solid target)
and electron beam energies delivered for the EG2 experiment of value of 4 GeV and 4.7
GeV are shown with their relative approximate number of events
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Beam Energy Liquid Target Solid Target Number of events

5.0 GeV

2H

Fe ∼ 2174.99 M

Pb ∼ 1453.05 M

None ∼ 11.95 M

Al (1) ∼ 8.77 M

C ∼ 1047.45 M

Sn ∼ 95.62 M

empty

Fe ∼ 9.96 M

Pb ∼ 8.77 M

None ∼ 0.80 M

Al (1) ∼ 231.88 M

C ∼ 8.77 M

Al (2) ∼ 9.96 M

H2

Fe ∼ 59.36 M

Pb ∼ 75.70 M

None ∼ 60.56 M

Al (1) ∼ 20.32 M

C ∼ 14.74 M

5.5 GeV

2H
Fe ∼ 87.25 M

None ∼ 132.67 M

empty
Fe ∼ 4.78 M

None ∼ 14.34 M

Table 2.3: Different targets configuration used (see Table 2.1 for reference of the solid target)
and different electron beam energies delivered for the EG2 experiment of value of 5 GeV
and 5.5 GeV are shown with their relative approximate number of events
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Chapter 3

REACTION IDENTIFICATION

The search for experimental evidence for Color Transparency is done in the Eg2 experiment

investigating the Q2 dependence for exclusive incoherent ρ0 electron-production in a Nuclei(

A scheme for this reaction is shown in figure 3-1). The Virtual photon γ∗ fluctuates in a

q, q̄ pair , that will interact with one of the nucleons inside the nucleus and produce a ρ0

meson. This will decay in a π+ π− pair.

e-

e-

q

q
0ρ

+π

-π

NN

t

*γ

Figure 3-1: Reaction under study. The particle detected in the final state are the scattered
electron and the π+ , π− pair.

The key points of this analysis will be:
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• To define and study the mass distribution of the ρ0. This will be determined using

an invariant mass technique on the π+ π−.

Mρ0 =
√

(pµ
π+ + pµ

π−) (pπ+µ + pπ−µ) (3.1)

• To determine the kinematics of the reaction one will need full knowledge of the γ∗.

This information will be obtained from a comparison of the quadrimomenta of the

electron beam and of the scattered e−.

3.1 Electron ID

To search for the scattered electron I analyzed the first track of the EVNT bank. The

cooking procedure puts the particle that most likely have triggered the event in this position.

For being considered as an electron we request on this particle three different type of cuts:

1. One that checks for good definition of the particle’s signal in each detector;

2. One that rejects the pion contamination on this track;

3. One that rejects tracks from regions where the efficiency of the detector is not full.

3.1.1 Cuts on the track

For defining a good signal in the detector the following cuts have been used:

• Status > 0 : To reject particles that passed the HBT (Hit Based Tracking), but failed

the TBT (Time Based Tracking);

• (DCstat, ECstat, SCstat, CCstat) > 0 : To consider particles where are involved the

following detectors: Drift Chambers, Electronic Calorimeter, Time of Flight, Cerenkov

Counters

• charge = −1 : To require that the charge of the particle is the same as that of the

electron.
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3.1.2 Pions rejection

Information from the Cerenkov Counters and the Electronic Calorimeter are used for re-

jecting the pions from the first track:

1. Cerenkov Counters : We Consider the momentum distribution of the π− produced

in our experiment and analyze the momentum dependence of the Number of photo-

electrons detected in the Cerenkov Counters (See figure 3-2 .The pions will give a

signal centered around a few photo-electrons). The cuts applied on the Number of

photo-electrons (Nphe) depend on the momentum of the track (p):

p < 2GeV and Nphe × 10 > 25 (3.2)

or p ≥ 2GeV and Nphe × 10 > 5

2. Electronic Calorimeter : The Energy deposited in the Electromagnetic Calorimeter

can be view summing the reading from all the 13 EC layers (Etot) or considering the

separate reading from two groups of 5 layers (ECin) and 8 layers (ECout) to obtain

longitudinal information. Analyzing the plot in figure 3-3 one can see that, because

in this data the trigger has an EC total energy threshold of 0.172GeV , there is a

considerable decreasing of electron for Etot < 0.172 ⇒ ECout < 0.172 − ECin. The

pion contamination is visible as a sharp peack in the energy deposited in the inner

part for energy below our threshold. This peack has a long energy tail that is detected

in the outer region of the EC (for more information see [41]). For these reasons the

following cut was applied:

Ein > 0.05GeV , Eout > 0.172GeV − 1.2 Ein (3.3)

A further cut was also decided on the plot in figure 3-4 : Because the sampling fraction

( which states the approximate fraction of the particle’s energy which will be observed

in this detector), one is expected to have for electrons a value of ECtotp ∼ 0.27. For this

reason, a ±3σ cut around the central peack (∼ 0.27) was placed for the distributions
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Figure 3-2: On the top part is plotted the Number of photo-electron produced in CC
multiply by 10 for 2 different momentum range (p < 2.0GeV on the left and p > 2.0GeV
on the right) for enhancing the fact that the main part of the pion contamination is for
p < 2.0GeV . One can compare the different momentum distribution for π− (on the right)
and e− (on the left) in the 2 lower plots.

of ECtot obtained at constant momentum p. For defining the region of this cut , the

distribution of figure 3-4 was “sliced” with constant momentum range and then fitted

with a Gaussian. In this way one can determine the center of the distribution and the

relative σ. The 3σ points where then fitted as a function of the electron momentum

(see figure 3-4). The final cut applied is:

ECtot
p

> 0.220− 0.260 e−0.672GeV −1 p +
0.0616GeV

p
(3.4)

ECtot
p

< 0.350 + 0.0326 e−0.553GeV −1 p +
0.00209GeV

p

3.1.3 Cuts on region of not full efficiency

The Electronic Calorimeter is composed of different sections (see chapter 2.2.3 of this doc-

ument for more information). Each section has the shape of an equilateral triangle and
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Figure 3-3: Eout vs Ein plot before (left) and after (right) EC cut
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Figure 3-4: ECtot
p vs p plot before (left) and after (right) 3σ cut

the sides of this triangle (parallel to the scintillator strips that carry the signal) are labeled

u, v, w. Considering that the signal on this detector is composed of an electromagnetic

shower (a signal that occupies more than a single strip), the information detected cannot

be trusted with a good confidence level if it is close to the sides of the triangle. For avoiding

redundancies, just a single cut on each of these plain/coordinate (u, v, w) is needed (see

figure 3-5):

u ≥ 40 (3.5)

v ≤ 360

w ≤ 395
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Figure 3-5: From Top to Bottom, respectively EC u, v and w coordinate before (left) and
after (right) the cut defined in 3.5

3.2 Pions ID

Well identifying pions and separating their signal from the one of electrons is one of the

important tasks in this experiment. Different series of cuts have been decided to better

recognize the signal from π+ and π−.

3.2.1 Identification of π+

To identify the track of a π+ the following cuts have being used:

• Status > 0 : To reject particles that passed the HBT (Hit Based Tracking), but failed

the TBT (Time Based Tracking);

• (DCstat, SCstat) > 0 : To consider particles where all these detectors are involved:
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respectively Drift Chambers and Time of Flight

• charge > 0 : To require that the charge of the particles is the one of a π+ .

• The β of the particle was determined using two different ways:

1. Using information of the track’s momentum, one can determine the speed of the

particle (assuming that is really a pion) by βπ+ = pπ+√
p2π++m2

π+

;

2. Using togheter the information on the length of the particle’s path (lπ+) and its

time of flight (tTOF ), one can also directly measure the β as lπ+
tTOF c

.

One can then compare the values so obtained plotting their difference ∆β as a function

of the track’s momentum. The π+ distribution will be shown as a peack around the

x axis, which represents points characterized by ∆β ∼ 0 (see figure 3-6)
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Figure 3-6: ∆β is plotted here as a function of the track’s momentum p express in GeV . A
cut has been placed around the x axis (|∆β| < 0.05). The result of the cut shown in the
picture on the right. The points at |∆β| = 0.05 represent the ±2σ cut for the distribution
determined at constant momentum and centered around |∆β| = 0

|∆βπ+ | < 0.05 (3.6)

• To identify pions with momentum p > 2.5GeV we consider information obtained

from the Cerenkov detector. At this energies we know that the pions will have enough
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speed to fire the Cerenkov detector. More massive particles, as kaons and protons

will not already pass the speed of light of the medium and will not produce a distinct

Cerenkov signal. For this reason we require (where Nphe represents the Number of

photo-electron produced in the Cerenkov detector):

if p > 2.5GeV ⇒ Nphe × 10 > 25 (3.7)

• This track is supposed to fail the positron ID (defined in the same way as the electron,

with the difference that now the required charge = +1)

3.2.2 Identification of π−

To identify the track of a π− the following cuts have being used:

• Status > 0 : To reject particles that passed the HBT (Hit Based Tracking), but failed

the TBT (Time Based Tracking);

• (DCstat, SCstat) > 0 : To consider particles where all these detectors are involved:

respectively Drift Chambers, Time of Flight

• charge < 0 : To require that the charge of the particle is the one of an electron.

• As for the π+ we determine the β of the particle using two different ways:

1. Using information of the momentum of the track, one can determine the speed

of the particle, βπ+ = pπ+√
p2π++m2

π+

;

2. Using togheter the information on the length of the particle’s path (lπ+) and its

time of flight (tTOF ), β = lπ+
tTOF c

.

One can then compare the values obtained plotting their difference ∆β as a function

of the track’s momentum. The π− distribution will be shown again as a peack around

the x axis, which represents points characterized by ∆β ∼ 0 (see figure 3-7)

|∆βπ− | < 0.05 (3.8)

55



p (GeV)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β ∆

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

p (GeV) 0.5
1

1.5
2

2.5

β∆

-0.06-0.04-0.0200.020.040.06

1

10

210

310

Figure 3-7: ∆β is plotted here as a function of the track’s momentum p express in GeV . A
cut has been placed around the x axis (|∆β| < 0.05). The result of the cut shown in the
picture on the right. The points at |∆β| = 0.05 represent the ±2σ cut for the distribution
determined at constant momentum and centered around |∆β| = 0

• As for the π+ we require a cut using the Cerenkov detector for pion characterized by

higher energy

if p > 2.5GeV ⇒ Nphe × 10 > 25 (3.9)

• The track needs to fail the electron ID (as described in this chapter).

3.3 Extraction of the ρ0 distribution

After having identified each particle in our reaction (see figure 3-1), we can proceed now in

extracting the mass distribution for the ρ0 vector meson. The following requirements have

been used to disentangle the signal of the ρ0 from other processes.

1. We are selecting only events with:

• Number electron = 1 and as first particle in the EVNT bank

• Number of π+ = 1

• Number of π− = 1

• Number of positron = 0
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2. We require a vertex cut: Electron, π−, π+ (See figure 3-8) needs to have vertexes from

the same target.
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Figure 3-8: Histogram of the Z Vertex position for the π+ and π−. One can easily distinguish
between the Solid and Liquid Target

To have selection for the target in the electron track, we use a cut the will be dependent

on which sector of CLAS detects the electron. In this way we can avoid problem due

to beam instabilities and to misalignment of the beam or of particular detectors.

3. At this step we can find the mass of the ρ0 using an invariant mass technique on the

π−, π+ (using momentum conservation on the ρ0 decay’s products). At this step the

invariant mass distribution is far from the expected Lorentz behavior (see figure 3-10).

4. At this point we can use different kinematical cuts for “cleaning” the ρ0 distribution.

The first cut will be W > 2GeV and is done to avoid the resonance region (see figure

3-12). The definition of W is (see figure 1-1 and equation 1.2 at page 4):
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Figure 3-9: After we require that the event has an electron with vertex correspondent to
one of the two targets, the selection of the target for π+ and π− from the same event results
easier. In these plots are shown the vertexes distribution for π+ and π− after we already
have applied our cut for the electron track

W =
√
M2
pr + 2Mpr ν −Q2 (3.10)

5. The second kinematical cut will be (0.1GeV 2 < −t ≤ 0.4GeV 2) (see figure 3-13).

t represents the invariant square of the momentum transfer with the target and is

defined as:

t = −(pµγ∗ − p
µ
π+ − p

µ
π−)2 (3.11)

Where −t > 0.1GeV 2 is for excluding coherent production off the nucleus; −t <

0.4GeV 2 is for still being in the diffractive region.

6. The last kinematical cut is done to select the elastic part of the mass spectrum. This

is done selecting Energies of the vector meson ρ0 which don’t differ too much from

the energy of the incoming γ∗. To this purpose we introduce a variable z defined as

z =
Eρ0

ν
(3.12)

We will consider in our analysis ρ0s which satisfy z > 0.9.

After these kinematical cuts, the Invariant Mass distribution for the combination of π−,

π+ will assume a Lorentz like behavior, as was expected for the ρ0 (see figure 3-11) with the
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target before kinematical cuts
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Figure 3-11: Final ρ0 distribution for
full Q2 range

addition of a small background contribution. To determine the shape of the still present

background we will use simulated events, as will be described in Chapter 5.
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Figure 3-14: z > 0.9 to select the elastic process
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Chapter 4

FIDUCIAL CUT

4.1 Motivation

The CLAS detector is considered, for a starting analysis, as a full 4π detector, able to

cover with the same efficiency and accuracy the full solid angle. In reality, being a system

composed of different parts and detectors, its acceptance is not the same in every region.

One of the detectors most affected is the Electronic Calorimeter, a detector mainly used

for the identification of the scattered electron. Because this detector analyzes ’showers’ of

hits, also a starting analysis will need a regional cut for taking care of its response. For

this purpose a cut directly on the coordinates on the surface of the EC (cut in u,v,w), is

normally use as a starting procedure. For a more deep knowledge of the full CLAS detector,

a detailed analysis of the respond of the detector for every single particle is needed. This is

done using a procedure called Fiducial Cut, where are defined the region in which the data

can be trusted with a good confidence.

4.2 Previous Method

The previous method was developed by D. Protopopescu (1 ). The method that I will be

using is a slight evolution from his study and will be explained in the next section. In both

methods the fiducial cut is structured to be a function of :

• particle type

1see http://nuclear.gla.ac.uk/clas/e2doc/FiducialCuts/fc4E2.html for further explanations
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• particle momentum p

• particle polar angle θ

• particle azimuthal angle ϕ , that will also give information on the sector of the detector

in which the particle hits

For every single particle type, a plot of the angle distribution for different momentum bins

is created for every sector. This distribution is then sectioned and studied as shown in

figure 4-2. The distribution found , because the reaction does not have a φ dependence,

will theoretically appear as a flat distribution for every single θ = const plot. The fact that

every sector is a separate detector causes the distribution to look like a central plateau,

where the apparatus works 100%, and an external region, where the acceptance is not full.

To simulate this distribution and find its edges, a trapezoidal fit is used. The edges of the

distribution where the accepance in the detector is full are then defined as the φ coordinate

of the minor basis of the trapezoid. The error on these edges is defined as a fraction of the

distance of these edges to the major basis φ coordinates(see figure 4-3). The ditribution of

these edges is then fitted with a curve (see equation 4.1 and check figure 4-1 for an example),

that will have the information on the fiducial cut for every single momentum bin and sector

of the detector.

if (θ < θmin or θ > θmax) =⇒ φ = 60(Sector − 1) (4.1)

else =⇒ φ = 60(Sector − 1) + (Side) a (1− 1
θ−θmin

b + 1
)

Where θmin, a, b are the free parameters,θmax is set to a default value for every single

particle, Side (= ±1) will switch between the upper and lower part (check( figure 4-1) for

an example).

This fit is done so that only the parameters store the requested information for a single

momentum bin. These parameters, for every single sector and particle will then be plotted

as function on the momentum and fitted with polynomial curves. These curves will then be
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Figure 4-1: Example of the fitted function that defines for simplicity my fiducial cut for
every momentum and sector. The red and blue show the 2 different sides of the function,
as in equation 4.1.

used in my analysis for defining the Fiducial cut by determining for any particle’s momentum

vector the corresponding parameters (θmin, a, b) that define my region of good confidence

(See figure 4-9).

4.3 New method

My method is a slight evolution of the previous one. I have tried to make improvements in:

1. The poor definition of the edge using a θ = const picture for the region where the

points on the border of my fiducial cut have ∆φ > ∆θ. In this case my determination

of the edge will be affected by my bin size in θ, that will give a systematic shift of my
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Figure 4-2: Example with previous method. On the left side is shown the contour plot
of the hit distribution (plot θ vs. ϕ) of electrons with energies between 1.15GeV ≤ E <
1.25GeV that are counted in the 5th Sector. On the right side is show the Y projection
of this distribution for 27.5◦ ≤ θ < 28◦. The edges of the distribution are defined using a
trapezoidal fit.

fiducial cut versus the center of the distribution (see figure 4-8 for an example)

2. The fact that using a polynomial fit for describing the momentum dependence of

each parameter that defines the fiducial cut could move each parameter away from its

physical value.

To solve these problems, the following is being done:

1. The contour distribution that defines the edges has been analyzed in 2 different ways.

In the internal region (red zone in the figure 4-4), where the points on the border

are characterized by (∆φ > ∆θ), a more accurate picture is created by a φ = const

approach (see figure 4-5). To describe the distribution and finding the point that de-

scribes consistently the edge of my fiducial cut, I have used a function constructed with

two Gaussian curves, characterized by the same center of distribution but different σ
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Figure 4-3: Example with previous method. On the plots are shown the edges and their
errors.

(see equation 4.2). The error is defined as σ1

if(θ ≤ µ) y = Ae
− (θ−µ)2

2σ21 (4.2)

else y = Ae
− (θ−µ)2

2σ22

where A,µ, σ1, σ2 are my free parameters. For the external part (the blue zones

in figure 4-4), because the edges follow a path with (∆φ < ∆θ) we can still use a

θ = const approach (see for example figure 4-2).

2. To solve some issues that were created by the use of a polynomial fit, more appropri-

ate functions that better follow the behavior of each parameter where used for each

different particle. For example equation 4.3 shows the expressions of the parametric

functions for θmin on π− (figure 4-7 shows the results in Sector 5).In equation 4.3 and
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in the following ones , mom represent the particle’s momentum.

θmin = p0 +
p1

mom2
+ p2mom+

p3

mom
+ p4 e

p5mom (4.3)
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Figure 4-4: An example of contour where the edges for fiducial cut are defined using a
φ = const in the red zone, and a θ = const in the blue zones.
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Figure 4-5: Example with new method. On the left side is shown the contour plot of the
hit distribution (plot θ vs. ϕ) of electrons with the same ranges as in figure 4-2. On the
right side is the Y projection of this distribution for 234◦ ≤ ϕ < 234.6◦. The edge of the
distribution is defined using φ = const as in the picture.

4.4 Results

Using this procedure a fiducial cut was developed and applied to my distributions. One

example of the changes followed is in figure 4-9. In the tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,

4.8 and 4.9 are reported the values of the parameter functions (see equation 4.1) found for

different particles and energies. These functions used are divided into two groups, due to a

different behavior in their momentum dependence.

• The following functions were used for electron and π+:

a = p0 + p1 e
p2(mom−p3) (4.4)

b = p0 + p1(mom) ep2(mom−p3)2

θmin = p0 +
p1

mom2
+ p2mom+

p3

mom
+ p4 e

p5mom
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Figure 4-6: Same point with the old method. The definition of the edges are slightly affected
by the binning size in θ, because their distribution is mostly parallel to the direction where
we are inspecting it (the line at constant θ).

• For π−:

a = p0 − p1 arctan(p2(mom− p3)) (4.5)

b = p0 + p1(mom) ep2(mom−p3)2

θmin = p0 +
p1

mom2
+ p2mom+

p3

mom
+ p4 e

p5mom

A test for a Fiducial cut with a target filter for the particle under observation was

also done. The difference of the distribution found for the 2 cases was consistent with a

shift from one target to the other, but remains inside the error-bar definition of the edge

of the particle distribution. So, filtering the data with a target cut did not give further

information, but did diminish the single statistic from which the single cut was developed:

so was decided to only use it as a further check on the analysis.

For a more detailed picture of the Fiducial cuts for the eg2 experiment check also

http://physics.unh.edu/~lzana/Fiducial_cut/50GeV/

where a detailed representation of every single step explained in this chapteris available.
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Figure 4-7: Distribution and relative fit for θmin, using the function defined in equation 4.3.

4.5 Cherenkov Efficiency

The Cherenkov detector efficiency, as a function of the momentum vector of the electron

has a complicated behavior on θe and φe for the edges of each sector. One can see for

example how in figure 4-10 the efficiency has an irregular shape for a low θe. In this plot,

for enhancing this behavior, the Geometrical cuts on the physical coordinate on the EC

detector (u,v,w cut in the definition of the electron in the particle id) was removed. The

Fiducial Cut previously developed eliminates from our analysis those regions that will be

difficult to study.
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Figure 4-8: On the top left is shown the definition of the edges using only θ = const plots.
On the top right the position of the edges are implemented using φ = const plots in the
central region. At the bottom the difference of the 2 approaches: In red are shown the
edges, using only θ = const, in blue using also φ = const plots in the central region
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Figure 4-9: On the top is shown the particle distribution before applying the fiducial cut.
On the bottom the position of the fiducial cut was applied.
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Figure 4-10: Cherenkov efficiency as a function of θ and φ for electrons in Sector 2 of the
detector of momentum of 2GeV . In the plot is shown how the Fiducial Cut (the black
curve) cuts off the regions where the efficiency has a very complicate behavior.

72



Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 25 -12 0.501025 4.4 0 0

1 -1 b 1.92939 1.7434 -0.557132 0.5 0 0

1 -1 θmin 15 0.88186 -1.30003 5.76432 2.5729 -0.1

1 1 a 25 -12 0.823146 4.4 0 0

1 1 b 3.1227 1.89182 -2 0.779806 0 0

2 -1 a 25 -12 0.554702 4.4 0 0

2 -1 b 3.06703 2 -2 0.5 0 0

2 -1 θmin 13.075 1.62944 0.226114 0.1 18.2157 -0.828278

2 1 a 22.3726 -12 0.838731 4.4 0 0

2 1 b 1.83127 1.89806 -0.236188 0.62221 0 0

3 -1 a 25 -12 0.498556 4.4 0 0

3 -1 b 2.90265 1.43039 -2 0.749855 0 0

3 -1 θmin 13 1.71788 0.0359657 0.100001 15.8527 -0.661962

3 1 a 25 -12 0.582999 4.4 0 0

3 1 b 1.92176 1.82314 -0.759261 0.5 0 0

4 -1 a 25 -12 0.726905 4.4 0 0

4 -1 b 2.36137 2 -0.404826 0.813316 0 0

4 -1 θmin 15 -0.923262 -0.530852 6.14555 17.3828 -1.58196

4 1 a 23.8476 -12 0.704378 4.4 0 0

4 1 b 1.87064 2 -0.315735 0.703461 0 0

5 -1 a 25 -12 0.701835 4.4 0 0

5 -1 b 2.93575 0.852784 -2 0.5 0 0

5 -1 θmin 15 1.31004 -1.16489 5.10505 2.22448 -0.1

5 1 a 22.7683 -12 2.55358 4.4 0 0

5 1 b 2.38154 0.803418 -0.251101 1.6 0 0

6 -1 a 25 -12 0.732397 4.4 0 0

6 -1 b 1.99008 1.66759 -0.351929 0.5 0 0

6 -1 θmin 14.7492 2.42291 -0.667212 6.7429 -86.3025 -4.99965

6 1 a 25 -8 0.396816 4.8 0 0

6 1 b 3.03289 1.03817 -2 0.5 0 0

Table 4.1: Set of parameters for the Fiducial cut (function as equation 4.4) for electron and
beam energy of 4.0 GeV
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 25 -12 0.5605 4.4 0 0

1 -1 b 2.1945 1.51417 -0.354081 0.5 0 0

1 -1 θmin 15 -0.425145 -0.666294 5.73077 10.4976 -1.13254

1 1 a 25 -8 0.479446 4.8 0 0

1 1 b 3.57349 2 -2 0.5 0 0

2 -1 a 25 -12 0.714261 4.4 0 0

2 -1 b 4 1.56882 -2 0.5 0 0

2 -1 θmin 15 -1.02217 -0.616567 5.51799 14.0557 -1.16189

2 1 a 25 -10.3277 0.380908 4.79964 0 0

2 1 b 3.02279 0.966175 -2 0.527823 0 0

3 -1 a 25 -12 0.616788 4.4 0 0

3 -1 b 3.3352 2 -2 1.01681 0 0

3 -1 θmin 15 -0.7837 -0.673602 8.05224 15.2178 -2.08386

3 1 a 25 -12 0.675835 4.4 0 0

3 1 b 2.02102 2 -1.70021 0.68655 0 0

4 -1 a 24.6345 -12 0.62982 4.4 0 0

4 -1 b 2.22769 2 -0.760895 1.31808 0 0

4 -1 θmin 15 -1.47798 -0.647113 7.74737 16.7291 -1.79939

4 1 a 25 -11.3361 0.636018 4.4815 0 0

4 1 b 3.1948 0.192701 -1.27578 1.6 0 0

5 -1 a 23.4731 -12 1.84236 4.4 0 0

5 -1 b 1.63143 1.90179 -0.213751 0.786844 0 0

5 -1 θmin 13 3.47361 -0.34459 8.45226 -63.4556 -3.3791

5 1 a 23.7067 -12 2.92146 4.4 0 0

5 1 b 3.0934 0.821726 -0.233492 1.6 0 0

6 -1 a 24.8599 -12 1.00513 4.4 0 0

6 -1 b 3.19807 0.173168 -0.1 1.6 0 0

6 -1 θmin 13 3.5714 -0.398458 9.54265 -22.649 -1.89746

6 1 a 25 -11.4641 0.55553 4.41327 0 0

6 1 b 2.48828 2 -2 0.70261 0 0

Table 4.2: Set of parameters for the Fiducial cut (function as equation 4.4) for electron and
beam energy of 5.0 GeV
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 24.1007 -12 0.988602 4.4 0 0

1 -1 b 1.55185 1.68372 -0.161292 0.5 0 0

1 -1 θmin 15 -3.58709 -0.790803 10 41.2384 -2.77844

1 1 a 24.69 -12 1.93755 4.4 0 0

1 1 b 3.12909 2 -0.378116 1.5125 0 0

2 -1 a 24.9833 -12 0.88648 4.4 0 0

2 -1 b 1.82949 2 -0.231991 0.705425 0 0

2 -1 θmin 15 -3.18861 -0.815618 10 32.1378 -2.66887

2 1 a 25 -12 1.01982 4.4 0 0

2 1 b 2.7463 2 -0.253927 1.32911 0 0

3 -1 a 25 -12 0.800149 4.4 0 0

3 -1 b 3.1405 1.58174 -2 1.31869 0 0

3 -1 θmin 15 -2.82339 -0.810061 10 60.6398 -3.4957

3 1 a 25 -12 0.86966 4.4 0 0

3 1 b 3.23553 2 -0.273695 0.709503 0 0

4 -1 a 24.2665 -8 0.607099 4.8 0 0

4 -1 b 3.20671 0.410017 -2 0.522952 0 0

4 -1 θmin 15 -1.97552 -0.84627 10 34.995 -3.9352

4 1 a 25 -12 0.975533 4.4 0 0

4 1 b 3.47462 1.80575 -0.202664 0.5 0 0

5 -1 a 24.188 -12 1.32876 4.4 0 0

5 -1 b 1.5 1.7525 -0.189277 0.856299 0 0

5 -1 θmin 15 -2.30891 -0.800546 10 88.7268 -5

5 1 a 25 -12 1.78226 4.4 0 0

5 1 b 3.61859 2 -0.366367 0.651266 0 0

6 -1 a 24.765 -12 0.925827 4.4 0 0

6 -1 b 1.5 1.34598 -0.326831 1.33186 0 0

6 -1 θmin 14.1075 -2.03962 -0.51452 9.99998 13.4081 -2.09748

6 1 a 25 -12 1.0577 4.4 0 0

6 1 b 3.42444 2 -0.590989 1.6 0 0

Table 4.3: Set of parameters for the Fiducial cut (function as equation 4.4) for electron that
scatter from the liquid target and beam energy of 5.0 GeV
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 24.359 -12 1.08727 4.4 0 0

1 -1 b 1.5 1.59052 -0.259681 1.27129 0 0

1 -1 θmin 15 2 -0.766135 6.12341 0.881064 -0.1

1 1 a 25 -12 2.24554 4.4 0 0

1 1 b 3.4203 2 -0.290494 1.6 0 0

2 -1 a 25 -12 0.89663 4.4 0 0

2 -1 b 2.36804 1.80254 -0.5017 1.3313 0 0

2 -1 θmin 15 -3.70033 -0.814569 10 49.079 -2.9723

2 1 a 24.312 -12 1.74735 4.4 0 0

2 1 b 3.07173 2 -0.387264 1.52787 0 0

3 -1 a 24.6813 -12 0.734971 4.4 0 0

3 -1 b 1.5 1.93037 -0.297351 1.18353 0 0

3 -1 θmin 13.09 -1 -0.290864 10 5.10383 -0.978917

3 1 a 25 -12 0.882621 4.4 0 0

3 1 b 1.98006 2 -0.426294 1.58099 0 0

4 -1 a 25 -12 0.681203 4.4 0 0

4 -1 b 1.61194 1.83177 -0.217064 0.5 0 0

4 -1 θmin 15 4 -0.934274 0.580047 4.19068 -0.1

4 1 a 25 -12 1.04315 4.4 0 0

4 1 b 3.36554 2 -0.274802 0.841709 0 0

5 -1 a 24.603 -12 0.970751 4.4 0 0

5 -1 b 1.61678 1.47754 -0.3742 1.25186 0 0

5 -1 θmin 15 3.85171 -0.884537 1.98321 3.17789 -0.1

5 1 a 24.9181 -12 1.60512 4.4 0 0

5 1 b 4 1.16076 -0.587872 1.6 0 0

6 -1 a 25 -12 0.802173 4.4 0 0

6 -1 b 1.5 1.2357 -0.267626 1.6 0 0

6 -1 θmin 15 -3.27307 -0.76759 10 28.4806 -2.34133

6 1 a 24.9784 -12 0.98088 4.4 0 0

6 1 b 2.87847 2 -0.398506 1.6 0 0

Table 4.4: Set of parameters for the Fiducial cut (function as equation 4.4) for electron that
scatter from the solid target and beam energy of 5.0 GeV
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 25.9392 -12 0.453685 4.4 0 0

1 -1 b 2.53279 1.19464 -2 1.25872 0 0

1 -1 θmin 15 4 -0.828672 2.51825 2.15567 -0.1

1 1 a 25.142 -12 0.357039 4.4 0 0

1 1 b 2.25185 0.527297 -0.1 1.55534 0 0

2 -1 a 26.3123 -12 0.40864 4.4 0 0

2 -1 b 2.9569 2 -2 0.74865 0 0

2 -1 θmin 13 1.99082 -0.159112 0.100001 13.6076 -0.554978

2 1 a 26.546 -12 0.425442 4.4 0 0

2 1 b 3.27384 2 -2 0.519786 0 0

3 -1 a 25.2953 -12 0.486011 4.4 0 0

3 -1 b 1.98429 1.914 -0.5088 0.721026 0 0

3 -1 θmin 13 3.82167 -0.0647212 0.100008 9.26858 -0.448555

3 1 a 26.4484 -12 0.519846 4.4 0 0

3 1 b 1.5 1.81489 -0.273122 0.5 0 0

4 -1 a 28 -12 0.366217 4.4 0 0

4 -1 b 2.29784 0.351108 -0.1 1.6 0 0

4 -1 θmin 13 1.50112 -1.3 0.1 12.3802 -0.200086

4 1 a 23 -12 0.562825 4.4 0 0

4 1 b 1.65084 1.91044 -0.574873 0.5 0 0

5 -1 a 28 -10.802 0.203741 4.40456 0 0

5 -1 b 2.79198 0.534785 -2 0.720147 0 0

5 -1 θmin 14.6669 1.79097 -0.355746 0.1 14.1265 -0.777645

5 1 a 23.2826 -12 1.15862 4.4 0 0

5 1 b 1.92076 0.90012 -0.112026 0.692653 0 0

6 -1 a 28 -11.9703 0.283665 4.4497 0 0

6 -1 b 1.84305 0.883945 -0.1 1.6 0 0

6 -1 θmin 14.0658 2.20492 -1.3 0.1 8.90341 -0.1

6 1 a 23.8565 -12 1.4323 4.4 0 0

6 1 b 3.18777 0.539951 -2 1.02089 0 0

Table 4.5: Set of parameters for the Fiducial cut (function as equation 4.4) for electron and
beam energy of 5.5 GeV
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 17.9074 5.5723 6 1.83182 0 0

1 -1 b 4 2 -2 1.08515 0 0

1 -1 θmin 15 0.256111 -0.925423 4.01752 3.97889 -0.1

1 1 a 17.283 5.21953 6 1.91703 0 0

1 1 b 3.81808 2 -2 1.246 0 0

2 -1 a 19.9864 4.73435 6 1.37676 0 0

2 -1 b 3.61595 1.98742 -2 0.5 0 0

2 -1 θmin 15 7.77818e-12 -0.126147 4.72109 9.33096 -1.56887

2 1 a 18.947 4.40193 6 1.49789 0 0

2 1 b 3.3033 1.02631 -2 0.5 0 0

3 -1 a 18.5174 4.75165 6 1.80735 0 0

3 -1 b 4 1.32282 -0.1 1.6 0 0

3 -1 θmin 15 1.7508e-12 -0.936497 5.08905 2.98662 -0.1

3 1 a 16.6633 5.7028 6 2 0 0

3 1 b 1.53246 1.63003 -0.1 1.6 0 0

4 -1 a 18.0998 5.62361 6 1.42677 0 0

4 -1 b 3.21066 1.19544 -0.1 1.6 0 0

4 -1 θmin 15 1.53231e-12 -0.501064 4.50628 7.2551 -0.644599

4 1 a 17.6381 5.33805 6 1.50883 0 0

4 1 b 4 0.331336 -0.1 1.6 0 0

5 -1 a 18.5118 6.82854 2.02903 1.66004 0 0

5 -1 b 3.04887 2 -0.1 1.6 0 0

5 -1 θmin 15 1.55422e-12 -1.09188 5.22385 3.77058 -0.1

5 1 a 17.5285 5.2995 6 1.54247 0 0

5 1 b 1.63324 1.79676 -0.1 1.6 0 0

6 -1 a 18.7772 4.88048 6 1.48777 0 0

6 -1 b 2.88692 2 -2 0.670166 0 0

6 -1 θmin 15 2.10305e-11 -0.154682 4.03708 11.844 -0.99065

6 1 a 17.953 4.81356 6 1.9173 0 0

6 1 b 3.32424 2 -2 1.39931 0 0

Table 4.6: Set of parameters for the Fiducial cut (function as equation 4.5) for π−
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 19.1102 4.66203 6 1.81612 -66.8709 7.10615

1 -1 b 2.77099 1.7572 -0.1 1.6 2.48338 -0.342461

1 -1 θmin 15 5.72237e-11 -0.929105 5.6858 1.67706 -0.1

1 1 a 16.757 5.27564 6 1.97715 -52.4773 5.3715

1 1 b 2.78222 2 -0.1 1.6 -1.35167 0.0964232

2 -1 a 19.1401 6.66175 2.50216 1.39498 -29.3615 2.45971

2 -1 b 4 2 -0.1 1.6 7.4528 -0.833107

2 -1 θmin 15 4.92273e-14 -0.278366 3.2139 19.8617 -1.92141

2 1 a 19.0101 3.61646 6 1.59532 -11.0627 0.787976

2 1 b 2.14054 2 -0.1 1.6 5.47021 -0.589086

3 -1 a 17.7755 5.53216 6 1.83457 80.0292 -8.27904

3 -1 b 4 2 -0.1 1.6 -16.9357 1.61027

3 -1 θmin 15 0.0847825 0.176445 0.1 29.1472 -1.38031

3 1 a 17.0281 5.78443 6 2 131.174 -13.6811

3 1 b 2.45078 2 -0.1 1.6 15.7436 -1.65744

4 -1 a 18.6028 6.14009 2.99805 1.44775 2.15047 -0.19045

4 -1 b 4 2 -0.1 1.6 0.683928 -0.139022

4 -1 θmin 15 8.02785e-12 -0.13664 3.53939 14.6939 -1.3825

4 1 a 17.6545 5.37066 6 1.53001 22.8617 -3.30725

4 1 b 3.24588 2 -0.1 1.6 -0.457285 0.0833146

5 -1 a 18.8869 5.12526 6 1.69547 -4.51536 -0.00135075

5 -1 b 3.16918 1.18792 -0.1 1.6 0.624475 -0.0762626

5 -1 θmin 15 1.45883e-14 -0.239069 3.8965 12.0028 -1.23209

5 1 a 19.8552 3.73797 6 1.47751 -33.4806 2.85274

5 1 b 1.99527 1.83377 -0.1 1.6 0.179893 0.0215777

6 -1 a 19.7426 4.83528 6 1.38671 -76.6483 7.9199

6 -1 b 3.1559 2 -0.1 1.6 10.7671 -1.12188

6 -1 θmin 15 3.22542e-13 -0.235386 3.77968 13.2531 -1.21174

6 1 a 18.7704 4.41378 6 1.84804 7.99312 -1.05906

6 1 b 3.3177 1.15112 -0.1 1.6 5.59571 -0.604218

Table 4.7: Set of parameters for the Fiducial cut (function as equation 4.5) for π− that
scatter from the liquid target
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 21.5906 3 6 1.5 -98.4753 10.1199

1 -1 b 4 2 -0.263359 1.6 12.5401 -1.31724

1 -1 θmin 15 0.129496 -0.932709 5.51985 2.42232 -0.1

1 1 a 20.7613 3 6 1.42228 -63.0704 6.65034

1 1 b 4 2 -0.381708 1.6 4.99486 -0.561441

2 -1 a 15.4821 3 6 1.5 -0.822768 -0.819526

2 -1 b 4 1.29235 -0.1 1.09843 9.95987 -1.09267

2 -1 θmin 13.2774 0.277136 -0.12473 8.0107 -23.8628 -5

2 1 a 21.0209 3 6 1.42991 12.4385 -2.00364

2 1 b 4 2 -0.1 1.6 5.34311 -0.556602

3 -1 a 21.1478 3 6 1.5 75.2906 -7.97896

3 -1 b 4 2 -0.1 1.6 -1.74447 0.0839423

3 -1 θmin 15 1.5451e-12 -0.552632 8.31603 -34.8054 -3.51681

3 1 a 20.8521 3 6 1.5 42.0139 -4.70016

3 1 b 3.81429 2 -0.35339 1.6 6.05545 -0.666807

4 -1 a 19.6232 3 6 1.5 7.44871 -1.60669

4 -1 b 4 0.897632 -0.1 1.6 11.0814 -1.05975

4 -1 θmin 15 0 -0.377014 7.59012 -13.9522 -5

4 1 a 18.3193 3 6 1.5 -10.3767 0.714046

4 1 b 3.62012 2 -0.1 1.6 4.20159 -0.402619

5 -1 a 22.1876 3 6 1.26767 33.3173 -4.00962

5 -1 b 3.67317 2 -0.1 1.6 3.60755 -0.366642

5 -1 θmin 15 4.19664e-15 -0.469396 7.82059 -19.2934 -5

5 1 a 20.7616 3 6 1.23536 -25.2243 2.01082

5 1 b 1.5815 2 -0.110684 1.6 14.8785 -1.52585

6 -1 a 17.8822 3 6 1.5 -27.9399 2.5226

6 -1 b 4 2 -0.1 1.6 1.70384 -0.067631

6 -1 θmin 15 2.42473e-14 -0.68071 8.52575 -27.054 -5

6 1 a 22.4999 2.23911 6 1.5 -49.2345 5.28787

6 1 b 4 2 -0.335201 1.6 12.6318 -1.33811

Table 4.8: Set of parameters for the Fiducial cut (function as equation 4.5) for π− that
scatter from the solid target
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Sector Side Par p0 p1 p2 p3 p4 p5

1 -1 a 25 -12 1.64476 4.4 0 0

1 -1 b 4 2 -0.978469 0.5 0 0

1 -1 θmin 7.00823 0.207249 0.169287 0.1 0.1 -0.1

1 1 a 25 -11.9735 0.803484 4.40024 0 0

1 1 b 2.53606 0.442034 -2 1.02806 0 0

2 -1 a 25 -12 1.51915 4.4 0 0

2 -1 b 4 2 -2 0.5 0 0

2 -1 θmin 5.5 0.1 0.506354 0.1 3.30779 -0.651811

2 1 a 24.8096 -8 0.85143 4.8 0 0

2 1 b 2.65468 0.201149 -0.179631 1.6 0 0

3 -1 a 25 -12 1.1095 4.4 0 0

3 -1 b 2.78427 2 -1.73543 0.5 0 0

3 -1 θmin 7.06596 0.127764 -0.0663754 0.100003 4.499 -3.1793

3 1 a 24.8758 -8 1.01249 4.8 0 0

3 1 b 3.17084 1.27519 -2 0.5 0 0

4 -1 a 25 -12 0.977829 4.4 0 0

4 -1 b 3.58539 1.38233 -2 0.5 0 0

4 -1 θmin 6.32763 0.1 0.221727 0.1 5.30981 -3.3461

4 1 a 25 -12 0.910994 4.4 0 0

4 1 b 2.47156 1.76076 -1.89436 1.03961 0 0

5 -1 a 25 -12 0.955366 4.4 0 0

5 -1 b 3.32277 0.0410601 -0.953828 0.5 0 0

5 -1 θmin 5.5 0.211012 0.640963 0.1 3.20347 -1.10808

5 1 a 25 -8.52574 0.682825 4.79866 0 0

5 1 b 2.42349 1.25399 -2 0.815707 0 0

6 -1 a 25 -12 0.969146 4.4 0 0

6 -1 b 4 2 -2 1.08576 0 0

6 -1 θmin 5.5 0.281549 0.358452 0.1 0.776161 -0.462045

6 1 a 25 -8 0.88846 4.8 0 0

6 1 b 2.64394 0.15892 -2 1.31013 0 0

Table 4.9: Set of parameters for the Fiducial cut (function as equation 4.4) for π+
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Chapter 5

DATA ANALYSIS

5.1 Background Study

It is important in our analysis to determine in both our targets the cross section of the ρ0

vector meson. For this purpose one needs to disentangle in the invariant mass distribution

(see for example figure5-1) the signal of the ρ0 decay (A Breit-Wigner shape) from back-

ground processes which pass our cuts. A normal procedure will be to use a predetermined

 (GeV) 0ρ  
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Figure 5-1: Final ρ0 distribution for full Q2 range

background-signal function. A fitting procedure will calculate the weight of one respect

to the other. Considering that the final ρ0 distribution has a shape very close to the one

expected from the decay of the ρ0, this fitting procedure will model dependent from the

82



background shape considered. Another point is that the χ2 minimization will be driven

mainly by the edges of the distribution, because they correspond to the points with smaller

errors. We have decided to use a Montecarlo simulation approach to have a less model

dependent study of the background.

5.1.1 Event Generator

The Montecarlo Event generator was implemented by B. Mustapha1 from a preexisting

generator developed at the INFN of Genova [47]. It has the following features:

• Characteristics of both the eg2 targets with different combinations (with also the

possibility to run with empty configuration).

• Possibility to change the electron beam energy.

• Different ways to turn on the Fermi motion in the target.

• Possibility to consider also Radiative Effects.

• Capability of taking into account Straggling effects with different characteristics.

• Possibility to limit the kinematics of the generated event following our analysis cuts.

In this way one does not generate event that will never be considered in the final study.

This will save time in processing the next steps, because omits the computation of

this data.

• Possibility to use experimental cross sections for every single process (ρ0 production

+ single background contributions) as determined in [48]. Using experimental data

one has a solid independent basis for determining the signal from the other reactions.

• Chance to define the ρ0 distribution as a Classical or Relativistic Breit-Wigner.

• Assumption that the main contribution to our background processes will be due to:

1Argonne National Laboratory: email mustapha@phy.anl.gov
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1. γ∗ + p −→ ∆++ + π−

2. γ∗ + p −→ ∆0 + π+

3. γ∗ + p −→ p + π+ + π−

One will see if this conjecture have to be consider correct or not from the agreement

of the simulated data with our experimental behavior.

This event generator shows very good agreement with the kinematical behavior of our

Virtual Meson analysis, giving many advantages as in our definition of the backgrounds or

acceptance correction. This will be shown and explain in the following sections.

5.1.2 GSIM

GSIM is a program which simulates the response of the CLAS detector to Montecarlo gen-

erated events. The peculiarity of the Eg2 targets has been implemented by Hayk Hakobyan

(see figure. 5-2 as a reference for the Eg2 target and 5-3 as the simulated picture). One can

see a more detailed description of the implementation of the target at [49] and [50].

Figure 5-2: Picture of the Eg2 target dur-
ing the assembling process

Figure 5-3: Eg2 Target input in GSIM
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5.1.3 GPP

After the simulation with GSIM of the full geometry of CLAS during the EG2 experi-

ment, one needs to connect the Montecarlo data to the resolution and efficiency of the

detector during the run. One will also have to take into account the fact that we are

analyzing separately different targets configuration and that each of these configurations

will have slightly different efficiency (because they were taken at different times). To con-

struct an estimate of the situation of the detectors, a file has been created with the sum

of the information of each run for each single configuration of targets and Beam Energy

(See http://www.jlab.org/Hall-B/secure/eg2/Efficiency/). The procedure I have followed

to create a Map for the Drift Chambers Inefficiency is the one presented in [51]. A different

Map has been created and put in a database for each combination of targets and energy. In

figure 5-4 is shown an example of the efficiency during our experiment which will be tuned

into our simulation.

Figure 5-4: Efficiency plot in Sector 2 for D2 + Fe at 5GeV as a function of the Layer
Number and the Wire Number.
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Another feature of GPP (GSIM Post Processing) is that it permits to smear the distribu-

tions of the Distance Of Closest Approach (DOCA) in the Drift Chambers and of the Time

Of Flight simulated in the scintillators. This will give a more realistic behavior, adding a

Gaussian with an adjustable sigma to the distribution’s edges. To correlate the simulation

with the data, I have used the Time Based Track Residual for both proton and electron:

This quantity is determined during the data analysis for each Sector and Super-Layer of the

Drift Chambers (and is used in DC calibrations). As before, I have added the information

of each run in any specific combination and created a single file as a model for the simu-

lated events. This is done in order to have a picture of the detector properties during every

single configuration of the experiment. As shown in figure. 5-5, in exchange for having a

better agreement with the experimental value, I have used, for fitting the data, the sum of

2 different Gaussian with the same weight. One (wide) will cover the edges distribution,

the other (narrow), will shape the center (a similar procedure is used in DC calibrations).

At the time of introducing the inefficiencies in the simulation (see section 5.2 at page 5.2),

I will have to run 50% of the time with one configuration (wide) and 50% with the other

(narrow). In order to get the desired result I will need to consider both the outputs together

(as shown in figure 5-5).

GPP permits just the choice of a single sigma (as the parameter for the gaussian smearing)

for each Region of the Drift Chambers. I will choose the one which better describes the

behavior shown by protons and electrons in our data-set (See http://clasweb.jlab.org/cgi-

bin/ENOTE/enote.pl?nb=eg2&action=view&page=112). A good agreement on the resolu-

tion of our dataset is important because is connected directly to the reconstruction protocol.

5.1.4 Results simulation

After run our simulation through GPP, we will process our MonteCarlo events exactly as

our original dataset, firstly reconstructing the track with RECSIS and then putting it in our

ρ0 identification procedure (as explained in Chapter 3). We can now compare our Vector

Meson Invariant mass histograms and see how, as shown in figures. 5-6 , 5-7 , 5-8 , 5-9,
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Figure 5-5: Distribution of TBT Residual for Proton in Super-Layer 1: On the left the
data, in the center what will look like if we just fit the distribution with a single Gaussian.
In the right we have use the sum of 2 different Gaussian , one wide, one narrow

we have good agreement with the behavior detected. This implies that we are confident

to be able to separate the ρ0 Breit-Wigner from the contributions due to the background

processes. We also know that we made the right assumption in the Event Generator, when

we considered just 3 contributions for the composition of the background processes.

A multiple fit procedure will be used in order to separate the background from the signal

and having a better control of the error in the procedure:

• At start we select events which are in our particuar kinematical region (applying cuts

in W , t and z and selecting separately each bin in Q2)

• From the simulated events we determine the statistical distribution of the invariant

mass for just the background processes. This distribution is then fitted with a poly-

nomial of 5th order

• We will now select in the simulated events all the processes (this time also the ρ0 elec-

troproduction). We will fit the distribution so obtained with the function constructed

by adding a Breit-Wigner distribution on top of the background function determined

in the previous step (see figure 5-6 and figure 5-8).

• We will scale the function so constructed to the invariant mass distribution obtained
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Figure 5-6: Invariant mass distribution for a Q2 bin of simulated data with Deuterium
target. On green is shown the contribution due to background processes fitted with a
polynomial of 5th order. On red is shown the fit of the data of the function obtained adding
a Breit-Wigner curve to the background function.

from the data (see figure 5-7 and figure 5-9).

This function well describes the data points of the invariant mass distribution for each

experimental Q2 bin. In this way we will obtain a reliable way of weighting the different

contribution on the invariant mass in this kinematical range and we will be able to separate

the signal from the background processes.

5.2 Acceptance and Efficiency Corrections

CLAS is a detector which covers mostly all the 4π solid angle range. One will analyze at

the same time the correction at the experimental data due to:

• Acceptance: Where one is correcting for the fact that the geometry of CLAS does not

cover the full momentum-space range of the phenomena under study

• Efficiency: Where one is considering that the detectors that compose CLAS and the

reconstruction protocol and our analysys, don’t have a perfect efficiency in detecting

88



 (GeV) 0ρ  
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

50

100

150

200

250

300

350

400

450

=68 for DF=572χ bin 1 Liquid target 0ρ

Figure 5-7: The function obtained from the simulation shown in figure 5-6 is then scaled to
fit the experimental data points. Here is shown the result of this fit

each particle in our experiment.

This is due to the complexity and difficulty to disentangle the two different contributions

from the dataset. In order to determine these corrections to our data, one will need to find

a way of getting from our experimental distributions what shape should the data-set be

before passing through the detectors. The method used to find the response of CLAS to

our experiment is determined by the behavior observed on simulated data:

• As Event generator we will use the one developed for the study of the Background (see

section 5.1.1), because can well describe the kinematic behavior of our experiment

• The events are then passed through GSIM, which will simulate the geometry of the

detector and of the target: This will take care of the Acceptance of CLAS

• The output of GSIM will then pass through GPP, simulating the efficiency of every

single part and giving to them a more realistic statistical behavior

• The output of GPP will pass through a reconstruction process. The data will go

through a first pass data analysis in order to simulate its efficiency.
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Figure 5-8: Invariant mass distribution for a Q2 bin of simulated data with Carbon target.
On green is shown the contribution due to background processes fitted with a polynomial of
5th order. On red is shown the fit of the data of the function obtained adding a Breit-Wigner
curve to the background function.

• The data so processed will go through our Particle Identification and analysis as

exactly was the experimental data.

At every step will still be accessible the original generated event distribution and the re-

constructed one, permitting to develop a statistical analysis of our acceptance correction.

5.2.1 Independent Variables

In the interest of having a statistical analysis of our Acceptance corrections one will have

to bin the data distribution. The distribution will be described by a complete set of in-

dependent variables which fully delineate the reaction under study. One will have to use

independent variables, because each bin, each single ipercube in this n-dimensional space

(where n is the number of degree of freedom of the process), can be treated as an in-

dependent identity (and so its acceptance/efficiency correction). Firstly one will have to

determine how many variables are needed to identify the process: Considering our reaction

(see figure5-10) one has:
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Figure 5-9: The function obtained from the simulation shown in figure 5-8 is then scaled to
fit the experimental data points. Here is shown the result of this fit

• The incoming electron: Is fully known, so no variables are needed to describe it

• The incoming proton: One can think 2 models:

1. The proton is considered at rest in the target, so its behavior is fully known

2. The proton in the nucleus is considered in motion (Fermi motion). One will have

to expend some variables to describe it. But, if one average the acceptance over

the Fermi motion (parameterized in the event generator), the kinematic of this

particle can be considered as fully known.

• The outgoing electron, the recoiling proton and the detected π+ and π−: For each of

these one has 3 unknown ((4 momentum - 1) because the particles are physical, so

on mass-shell). This will give a total of 12 unknowns. If one consider now that the

process needs to satisfy the quadri-momentum conservation (4 unknowns) and that

has cylindrical symmetry respect to the direction of the beam (1 unknown), one can

state that this reaction has 7 degree of freedom.
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Figure 5-10: Reaction under study. 7 Variables are needed for fully describing his behavior

Figure 5-11: Lepton and Hadron plane and
definition of the angle

Figure 5-12: ρ0 decay in the ρ0 rest system.

Based on the article by K.Schilling [52] and from consideration also of the behavior of

our kinematical cuts, the variables being used are:

1. Q2 (see figure5-10 and relation at pag.4)

2. W (see figure5-10 and relation at pag.4)

3. t (see figure5-10 and relation at pag.58)

4. ρ0
mom, the magnitude of the momentum of the ρ0 particle

5. θπ+ (see figure5-12) defined as the θ for the decaying π+ in the ρ0 rest mass system,
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where:

• the ẑ axis is defined as the vector opposite to the momentum vector of the

recoiling proton

• the ŷ axis is defined before boosting the system in the ρ0 rest mass frame as

ŷ =
~pγ∗× ~pρ0

| ~pγ∗× ~pρ0 |
. It is ⊥ to ~pρ0 by construction, so it is left unchanged when boosted

in the ρ0 rest mass frame

• the x̂ axis is constructed for completion in the boosted frame as x̂ = ŷ × ẑ

6. φπ+ (see figure5-12) is defined as the φ for the decaying π+ in the ρ0 rest mass system

defined above

7. φlh (see figure5-11) is defined as the angle between the leptonic and hadronic plane

For the sake of deciding how to bin in these variables, we will take into account different

factors:

• The structure of the cuts applied for constructing our analysis

• The comparison for the variables in consideration of the behavior of the final simu-

lated event distribution with the same variables distribution for the data. In case of

complete agreement, after renormalization, of those two plots, we will consider that

the simulation is well describing the acceptance correction in this variable. That will

permit us to decrease the number of bins for this variable, because we can integrate

over the full distribution. We will still need to consider the binning induced by our

analysis cuts.

Comparing the results shown from figure 5-13 to figure 5-26, one can see how the sim-

ulated events well follow the physical behavior for mostly all of the experimental variables.

Some discrepancy is found in the shape shown for t (see figures 5-17 and 5-18),θπ+ (see

figures 5-21 and 5-22) and ρ0
mom (see figures 5-19 and 5-19). One can just integrate over the

other variables and use the binning induced by our analysis cuts. The final binning used is

shown in Tab 5.1.
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Q2 W t ρ0
mom θπ+

Bins n 3 2 4 6

Table 5.1: Binning used to determine the acceptance correction. The value of n depends
by the number of bins in Q2 that we use for studying our transparency effect. It is also
directly connected to the statistic available for the single data-set (For example for data
with Iron and Deuterium targets, we used n = 6).
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Figure 5-13: Q2 distribution for Liquid tar-
get for data (black) and simulation (red).
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Figure 5-14: Q2 distribution for Solid target
for data (black) and simulation (red).

5.2.2 One to one bin Acceptance correction

After we define which variables we want to use for describing our reaction, we want now to

analyze how a generated bin evolve during the all process. One can focus mainly on how to

connect the final distribution with the original bin occupancy. In the following I will refer as

generated event when I analyze it using the kinematics given by the montecarlo generator;

I will refer as reconstructed event when I use the kinematics detected. In this analysis of ρ0

electroproduction we will use two different methods to determine the acceptance correction

to the data-set:

1. The acceptance correction is determined comparing the occupancy of each generated

bins with the occupancy in the correspondent (same bin) reconstructed one.

2. The acceptance correction is obtained considering also the possibility that an event

generated with kinematics of a particular bin could have its variables slightly modified.

It will not be part of the same bin in the reconstructed data. The event “migrates”
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Figure 5-15: W distribution for Liquid tar-
get for data (black) and simulation (red).
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Figure 5-16: W distribution for Solid target
for data (black) and simulation (red).
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Figure 5-17: t distribution for Liquid target
for data (black) and simulation (red).
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Figure 5-18: t distribution for Solid target
for data (black) and simulation (red).

to a different bin. I will talk about this way of constructing the acceptance correction

in section 5.2.3.

In this section I will introduce the acceptance correction as in point 1, which was developed

for this analysis by Lamiaa El Fassi [1], who also worked in this project. The number of

events generated in each target is shown in table 5.2.

The efficiency is defined in each of the 5 dimensional bins k (function of Q2, t,W, pρ0 , θπ+)

as

effk =
Nrec(Q

2, t,W, pρ0 , θπ+)

Ngen(Q2, t,W, pρ0 , θπ+)
(5.1)
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Figure 5-19: ρmom distribution for Liquid
target for data (black) and simulation (red).
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Figure 5-20: ρmom distribution for Solid tar-
get for data (black) and simulation (red).
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Figure 5-21: θπ+ distribution for Liquid tar-
get for data (black) and simulation (red).
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Figure 5-22: θπ+ distribution for Solid tar-
get for data (black) and simulation (red).

where N represents the number of events in each bin. The correction will be constructed

as follows:

• Each event of the data will be assigned to a bin, depending on its kinematics

• This will be considered with a weight wk = 1/effk

• At last will be considered the sum of all the events which are part of the same Q2 bin

(used to check the Nuclear Transparency dependence on Q2),

nQ2 =

m∑
k=1

wkNk (5.2)
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Figure 5-23: φπ+ distribution for Liquid tar-
get for data (black) and simulation (red).
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Figure 5-24: φπ+ distribution for Solid tar-
get for data (black) and simulation (red).

0 0.5 1 1.5 2 2.5 30

50

100

150

200

250

300

350

 reconstructed event liquid
e-h

φ

Figure 5-25: φe−h distribution for Liquid
target for data (black) and simulation (red).
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Figure 5-26: φe−h distribution for Solid tar-
get for data (black) and simulation (red).

where I am assuming that nQ2 contains m bins and that each k bin as Nk experimental

events.

Some bins will have very small statistic, due to small efficiency. This could carry instabilities

in the definition of the acceptance correction. To avoid this problem, different cuts in the

correction have been applied:

• we rejects events with Q2 below 0.8GeV 2 (0.4 % of the data)
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Beam Energy Target Number of events generated

5.0 GeV

2H 200 M

Fe 200 M

C 100 M

4.0 GeV
2H 80 M

Fe 80 M

Table 5.2: Number of events generated in each target and beam energy, which have been
used in this analysis.

• we rejects bins with wk which satisfies (see figure 5-27):

wk ≥ 2000 (5.3)

∆wk
wk
≥ 0.25

These cuts will induce a discrepancy if we try to obtain from the reconstructed events the

full count of generated events. For this reason we will define a correction factor fw as

fw =

∑m
k=1wkNk(rec)

NQ2(gen)
(5.4)

This correction is defined for each Q2 bin in which we will divide the ρ0 histograms. As the

acceptance correction, the value of fw is determined for each target and energy separately

(see table 5.3).

Error and statistical analysis

To determine the statistical behavior of the acceptance correction determined in this way,

one will need to see how this correlation is logically constructed. One generated events

has just two possibilities: being part of the reconstructed bin or not being part of the

reconstructed bin. The number of generated events will not carry any error, because will

be considered as the number of trials. Taking into account the great number of generated

events which we are using, we can assume that the value of effk (see equation 5.1) can be

considered as a good estimate of the probability that a generated event will be reconstructed.
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Figure 5-27: w and ∆w
w histograms for the correction obtained for Deuterium target (left)

and Iron target (right). The cuts applied (see equation 5.3) will reject the part of the
acceptance correction which will cause some instabilities [1].

To determine the error on effk one will need to determine the statistical fluctuation of the

number of reconstructed events in each bin Nk(rec). After this observations one can see how

the acceptance correction follows a binomial statistical behavior, where, in each bin, the

number of trials is represented by the number of generated events (Nk(gen)); The probability

p of success is represented in each bin by the efficiency (effk). The statistical fluctuation

on the number of reconstructed events in a bin is then given by

σ2
Nk(rec)

= Nk(gen)effk(1− effk) (5.5)

From this one can derive the error on the efficiency to be

σeffk =
σNk(rec)
Nk(gen)

(5.6)

we can find now the error induced on the data after the correction (equation 5.2)

σnQ2 =

√√√√√√√ m∑
k

w2
kσ

2
Nk(dat)︸ ︷︷ ︸
(a)

+N2
k(dat)σ

2
wk︸ ︷︷ ︸

(b)

 (5.7)
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fw values

Deuterium Iron Carbon

Q2 bin 4GeV 5GeV 4GeV 5GeV 5GeV

1 0.96 0.95 0.96 0.94 0.96

2 0.97 0.97 0.97 0.97 0.98

3 0.97 0.98 0.97 0.97 0.97

4 0.98 0.98

5 0.99 0.99

Table 5.3: Values of the correction fw defined in equation 5.4 for different targets and energy
[1]

In equation 5.7 the (a) part will be used as an estimate for the statistical error. To determine

the systematic error induced with this correction we will use the term (b)

Results with this correction

To test the correction so constructed, was decided to plot the Q2 dependence of the Trans-

parency ratio for the simulated events. In this way we construct an estimate of the entity

of the acceptance using this procedure. The result shown in figure 5-28 indicates that this

correction is really important and has a Q2 dependence. This was considered due to the

distance between the two targets (solid and liquid) and to the particular kinematic region

targeted by this experiment. To increase the confidence in these results I developed an

independent way of determining the acceptance correction.

5.2.3 Bin Matrix and Migration

If one starts from an event generated by our MonteCarlo generator, one can schematize this

correction as the convolution of two contributions:

• The Event pass all detector/analysis process and is part of our final reconstructed

dataset

• The reconstructed event kinematic properties are slightly different from the generated
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Figure 5-28: In this figure is plotted the Nuclear Transparency ratio for simulations on
Iron and Deuterium targets[1]. In blue is plotted the ratio determined using the generated
events; In red is plotted the one obtained using the reconstructed events. The effect is really
large and will need further study

ones, so the event can “migrate” to a different bin.

A full knowledge of both processes will give a better estimate of what is the real acceptance

correction (we still need to bin our distribution, for statistical relevance). One can see from

figure 5-29 that is important to take into account the migration to other bins. At the end,

our acceptance correction will look like a matrix Nbin ×Nbin which will relate the number

of events in each of the reconstructed bin to the starting generated events:

Gi = Aij Rj (5.8)

To determine Aij I used the next information:

1. The bin population for the generated event (Gi).

2. The fraction of the population for the generated event which passes our analysis cuts

(Bik) for the reconstructed event (It is important to note that, in order to construct
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Figure 5-29: Bin migration effect; On the x axis 7-dim the generated bin linearized for
2-dim visualization; on the y axis, the reconstructed one. In case of no bin migration effect,
one will have a perfect diagonal.

Aij , the kinematics of the simulated event need to occupy one of the bins for both

generated (i) and reconstructed one(j)).

3. The transformation of these selected events. I will determine how the generated event

distribution gets deformed during the full process (Ckm).

4. The fraction of the bin population for the reconstructed event which occupies one of

the bin also for his generated part (Dmj).

5. the final reconstructed event population without the condition on the generated event

bin (Rj), because this is the structure of our experimental data-set.

So, after some normalization (where I will scale the matrix to the value of a single

reconstructed event), the acceptance correction will look like

Gi = Aij Rj

Gi = Bik CkmDmj Rj (5.9)

It is important to note that:
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• The matrix Bik and Dmj are diagonal because they relate a single bin to itself (what

fraction of the event in a bin satisfy a certain cut). For this reason they can be

expressed as:

Bik = λi δik Dmj = βm δmj (5.10)

• The matrix C ′km is constructed from the simulated data counting the number of events

which are in the k − generated bin and m− reconstructed bin. The structure of the

matrix C ′km is shown in equation 5.11.

(k − generated)

m−reconstructed︷ ︸︸ ︷



C ′11 C ′12 C ′13 · · · C ′1m · · · C ′1N

C ′21 C ′22 C ′23 · · · C ′2m · · · C ′2N

C ′31 C ′32 C ′33 · · · C ′3m · · · C ′3N

...
...

...
. . .

...
. . .

...

C ′k1 C ′k2 C ′k3 · · · C ′km · · · C ′kN

...
...

...
. . .

...
. . .

...

C ′N1 C ′N2 C ′N3 · · · C ′Nm · · · C ′NN



(5.11)

This matrix so constructed will need to be normalized to unit (single reconstructed

bin), so that I will be able to delineate the deformation on the experimental data-set.

This procedure need to be done in order to connect each bin to their generated value.

Defining now :

1. G′k as the number of events in the k-generated bin that are part of any reconstructed

bins

2. R′m as the number of events in the m-reconstructed bin that are part of any generated

bins
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We can finally derive the Acceptance matrix:

G′k =

N∑
m=1

C ′km (5.12)

R′m =

N∑
k=1

C ′km (5.13)

Ckm =
C ′km
R′m

=⇒ Normalized (5.14)

Bik = λi δik =⇒ λi =
Gi
G′i

(5.15)

Dmj = βm δmj =⇒ βm =
R′m
Rm

(5.16)

Putting all togheter, the matrix for correcting our data will be:

Aij =
Gi
G′i

δik Ckm
R′m
Rm

δmj =
Gi
G′i

Cij
R′j
Rj

(5.17)

Error and Statistical Analysis

The acceptance correction matrix has two different statistical behavior:

1. The parts which corresponds to diagonal matrix, because they show how a single bin

evolves in these functions, are described by a binomial statistic. In each part one will

need to be careful in deciding which quantity represents the number of trials (which

part will not carry error)

2. The part which will describe the deformations of the bin occupancies due to bin

migration follows a multinomial distribution, becasue considers together an ensemble

of possibilities which exclude between each other.

To better schematize the error analysis of each step of the acceptance correction, I am

defining the common structure of the statistical uncertainty as

σ2
a = n p ( 1 − p ) where p =

a

n
=⇒


(a) σp = |∂p∂a |σa = σa

n

(b) σ 1
p

= |
∂( 1
p

)

∂a |σa = n
a2
σa

(5.18)

In equation 5.18 n represents the number of trials, a the number of successes, p the estimate

of the probability of success. The Statistical analysis of the three parts of the acceptance

correction is done as follows:
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• Analysis of the matrix Bik in equation 5.15: In this matrix, following the parametriza-

tion in equation 5.18, p = 1
λi

, n = Gi and a = G′i. For this reason σλi will follow for

the determination of the error the case label as (b) in equation 5.18.

• Analysis of the matrix Dmj in equation 5.16: In this matrix, p = βm, n = Rm and

a = R′m. From this follows that the error σβm is determined using the equation labeled

(a) in equation 5.18.

• Analysis of the matrix Ckm in equation 5.14: The probability structure of this ma-

trix will follow a multinomial distribution. This distribution is a generalization of

the binomial distribution and describes the probability of a particular combination

of k-different possible outcomes from n independent trials. Each of the possible out-

come has a probability of success of pk. The probability of a particular combination

x1, x2..., xk (where
∑k

i=1 xi = n, the number of independent trials) is given by:

P (x1, x2..., xk) =
n!

x1!x2!....xk!
px11 p

x2
2 .....p

xk
k where

k∑
i=1

pi = 1 (5.19)

If one considers each possible outcome separately and groups together the other pos-

sibilities one can see how the error will have the same behavior as the binomial dis-

tribution

σ2
xk

= n pk ( 1 − pk ) (5.20)

Other than the possibility of carefully construct the error induced, one of the advan-

tage in constructing the acceptance correction with bin migration in this way is that

C ′km, following equations 5.12 and 5.13, has the property that:

N∑
k=1

G′k =

N∑
m=1

R′m =

N∑
k=1

N∑
m=1

C ′km (5.21)

This property (connected to
∑k

i=1 pi = 1) gives the freedom to choose which quantity

to pick as the independent trial. This will induce the fredom of choosing which matrix

to construct. I will construct directly the matrix which define the correction to be

applied to the data, avoiding the procedure of inverting a matrix Nbins×Nbins. In this
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way Ckm represents the probability that a reconstructed event in bin m is generated

from bin k (pk in equation 5.20). The number of indipendent trials is R′m (n in

equation 5.20). The number of sucesses is C ′km (xk in equation 5.20). The error

carried by the correction due to C ′km is defined as :

σCkm = |∂Ckm
∂C ′km

|σC′km =
σC′km
R′m

=

√
C ′km

(
1 − C′km

R′m

)
R′m

(5.22)

Propagating the error from the 3 different contribution in equation 5.17, I can determine the

final error induced by the acceptance correction. Following the 2-dimensional implementa-

tion of equation 5.7, I will use the error here defined to describe the systematic uncertaintes

induced by this acceptance correction.

Simplification of the Acceptance correction matrix

The issue now will be generating and analyzing enough statistic with our simulation to

determine with considerable accuracy the value of each of the Nbin ×Nbin elements of the

Acceptance/Efficiency matrix. Such an amount of simulated data is actually not needed,

because, for defining the number of ρ0 in each bin in Q2 and so determining the cross

section, we are integrating in everything that lies in our kinematical cuts. In the same way

we will need to sum over our transformed bins after the correction. To show what this

imply we can define a matrix:

Π
(k)
si = γ(k)

s δsi , where γ(k)
s =


1 if bin s is in the kinematical cuts and kth −Q2 bin

0 if bin s is out the kinematical cuts and kth −Q2 bin

(5.23)

This matrix will select the bins which have kinematics that are part of a particular Q2

bin and cut off bins which are outside our kinematical cuts. In fact, to also determine

the migration into our data-set, I have defined our binning to go also outside these cuts.

This was done for every variable other than Q2, because we already push the edges of our

distribution close to its limits in order to increase our statistic in defining a Q2 dependence.

One can then guess that the contribution following this Q2 binning will not be determinant,
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being the addition of the migration of the two sided tail of the distribution inside our range

(see figure.5-13 for example). More important is considering the same phenomena for other

variables like t (see figure.3-13). Defining now Q(k) as the summed value of corrected events

in the kth bin in Q2, one has (for example here is shown Q(1)):

Q(1) =

N∑
s=1

Π
(1)
si AijRj = A11R1 +A12R2 +A13R3 +A14R4 +A15R5 +A16R6 + · · ·+

+ A31R1 +A32R2 +A33R3 +A24R4 +A25R5 +A26R6 + · · ·+

+ A41R1 +A42R2 +A43R3 +A34R4 +A35R5 +A36R6 + · · ·+

+ · · ·+ · · · =

= (A11 +A31 +A41 + · · · )R1 + (A12 +A32 +A42 + · · · )R2 + · · ·

One can see that is possible to add the statistic in each column of the matrix Aij for the

bins which are into the kinematical cuts of this Q2 range. Just Nbin × NQ2 elements of

the Acceptance/Efficiency matrix are needed to be determine with statistical significance

in order to correct our results on Transparency Effect. This also taking into account the

migration between different bins.

Another way where I have tried to implement the statistical significance of this acceptance

correction was in improving the values and errors definition from the multiple sums of this

correction. For example, the correction matrix will have its main contribution from the

diagonal terms, which represent the probability that a generated bin will be reconstructed

in the same kinematic. Plotting this correction in the planes which describe the kinematical

dependence of each bin (plotting it vs t for example or vs θπ+) one is able to see a Gaussian

behavior with center in the diagonal bin. From another point, when I am finally recon-

structing the corrected data, this different bin will have a certain behavior (see figure 5-30).

One can then fit these distribution with a function, defining so a sum which will weight

the contribution of the different points with their error. Due to the fact that we don’t

have many bins in each of the kinematical variables, we will not have enough points to well

determine the parametric functions. For example, to construct an asymmetric Gaussian, I

will need at least ≥ 5 different points. For this reason, and for the fact that this procedure
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Figure 5-30: Corrected data bin is shown as a function of t and θπ+

will induce a systematic error due to the choice of a particular function, I have decided to

keep using the direct approach explained before (see equation 5.9), adding all the corrected

bin and summing their error in quadrature.

5.2.4 Results of Acceptance Correction

For checking if the Acceptance matrix was constructed in the correct way, and so that were

not present miscalculations, I have feed this correction with the simulated reconstructed

data: As supposed, the correction reconstructed perfectly the bin population of the gen-

erated events from the original Montecarlo distribution. If I were to create a plot like the

one in figure 5-28 using this correction, I will obtain the same plot. This is because it was

obtained treating separately the Montecarlo generated events and the reconstructed one.

With the study with bin migration, I will have two independent ways to determine the

acceptance correction on the experimental data. In this way I will have a better confidence

on the results.
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5.3 Radiative Correction

The Radiative Correction has been determined using the Montecarlo event generator, which,

as mentioned before, has been implemented with the possibility to include or exclude ra-

diative effects. The kind of radiative effects included are correction to the particles in mass

shell in diagrams [53] and correction in the internal part of diagrams. For the latest part

has been used a code (DIFFRAD) [54], which has been particularly written for exclusive

vector meson production. The correction is then defined as the ratio of ρ0 generated in our

kinematical range (and each Q2 bin) for simulations with and without radiative effects :

FQ2(rad) =
Nρ0

norad

Nρ0

rad

(5.24)

For the Nuclear Transparency the effect has been found fluctuating between 0.5% and 4%.

5.4 Target Window Correction

To determine the correction due to the windows of the liquid target cell [55], we compared

the luminosity with liquid target cell full (deuterium) with the one measured with empty

target cell. The ratio between the two was found to be:

Lempty
LD

= 0.025 (5.25)

The material used to construct the cell is Aluminum. We don’t have enough data to

determine the Transparency ratio for Al (see table 2.2 and 2.3). In order to determine the

Transparency ratio for Al we will use the measured data from Carbon and Iron. This data

can be fitted with a Aα−1 function (where A is the mass number and α is the free parameter)

[15] for each bin in Q2 and lc. We can then determine the expected Transparency ratio for

Aluminum [1]. The correction to each bin due to the target windows will be:

TAcorr = TA ( 1 + TAl × 0.025 ) (5.26)
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5.5 Systematic Errors

In this section I will discuss the different sources of systematical error on this analysis.

Because we want to determine the Q2 dependence of the Nuclear Transparency ratio respect

to two targets, we will divide the systematic error in two groups:

• The normalization errors: Errors which have no dependence in Q2, causing a common

shift of all the points.

• The point to point errors: Errors which will not shift in the same direction different

Q2 bin.

The point to point error will be added in quadrature with the statistical error. The nor-

malization error will be considered separately, because will not influence the Q2 slope. In

this analysis, once defined a source of systematic error, we define the normalization error

for this source as the value of the lowest systematic error. The point to point error will be

defined for each source and each bin as

σ2
SY S(p2p) = σ2

SY S(tot) − σ
2
SY S(nor) (5.27)

In the following we will show different source of systematic error (for a more detailed

analysis, see [1])

5.5.1 Kinematical Cuts

The cuts on z and t were done to select an exclusive process and to ensure incoherent pro-

duction (see section 3.3). To find the systematic uncertainties induced by these particular

cuts, their limit were let slightly vary and the Nuclear Transparency ratio was determined

with the new values. The total systematic error was found affecting the calculated Nu-

clear Transparency with changes which varied in the Q2 bins between 0.1% and 1.4% for

Iron+Deuterium at beam energy of 5GeV . See table 5.4 and table 5.5 for the range and

composition of the systematic error (point to point and normalization).
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Point to Point error (%)

Iron Carbon

Q2 bin 5GeV 4GeV 5GeV

1 1.1 1.1 1.0

2 1.3 - -

3 0.5 0.9 1.2

4 - - -

5 1.1 - -

Table 5.4: Kinematical cuts: Point to Point systematic errors for different Q2 bins, different
targets and different beam energies

Normalization error (%)

Iron Carbon

5GeV 4GeV 5GeV

All Q2 bins 0.1 0.4 0.4

Table 5.5: Kinematical cuts: Normalization systematic errors for different targets and
different beam energies

5.5.2 Acceptance Correction

The systematic uncertainties have been calculated in the two methods used to determine

the acceptance correction. Due to the low statistic, the number of bins was not varied, but

were changed the limits of each bin. Another test was done omitting the pion non resonant

contribution to the background. In both cases the Transparency ratio was determined and

the total systematic uncertainties were obtained. This was done adding in quadrature, for

each Q2 bin, the difference of the value so obtained (as explained in this section) with the

uncertainty due to the acceptance correction (see equation 5.7 and 5.22).

One to one bin Acceptance correction

For the target combination of Iron+Deuterium with beam energy at 5GeV the total sys-

tematic error ranges from 0.8% to 1.9% (more detail in table 5.6 and table 5.7).
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Point to Point error (%)

Iron Carbon

Q2 bin 5GeV 4GeV 5GeV

1 1.6 1.8 1.1

2 - - -

3 1.7 1.6 1.2

4 1.6 - -

5 1.5 - -

Table 5.6: Acceptance correction (one to one bin): Point to Point systematic errors for
different Q2 bins, different targets and different beam energies

Normalization error (%)

Iron Carbon

5GeV 4GeV 5GeV

All Q2 bins 0.8 0.7 0.7

Table 5.7: Acceptance correction (one to one bin): Normalization systematic errors for
different targets and different beam energies

Bin Matrix and Migration

The beam systematic uncertainties induced by the acceptance correction with bin migration

are shown in table 5.9 and table 5.8.

5.5.3 Background Subtraction

In order to obtain the systematic error induced by our method of comparison between

montecarlo simulations and data, we will test our procedure in 3 different ways:

1. In the Breit-Wigner distribution we will consider the case where the “full with” Γ

is considered a free parameter in the fit, or is kept constant at its nominal value of

150.3MeV .

2. For the shape of the background we will use the one obtained from our implemented
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Point to Point error (%)

Iron Carbon

Q2 bin 5GeV 4GeV 5GeV

1 3.0 3.2 2.1

2 - - -

3 3.2 3.3 2.4

4 3.1 - -

5 2.8 - -

Table 5.8: Acceptance Correction (Bin Migration): Point to Point systematic errors for
different Q2 bins, different targets and different beam energies

Normalization error (%)

Iron Carbon

5GeV 4GeV 5GeV

All Q2 bins 2.1 2.0 2.1

Table 5.9: Acceptance Correction (Bin Migration): Normalization systematic errors for
different targets and different beam energies

event generator and the one derived from the original generator.

3. Different shapes for the ρ0 invariant mass distribution were used in parallel with

the non relativistic Breit-Wigner: Relativistic p-wave Breit-Wigner, Ross-Stodolsky

parametrization (see [1] for reference of these functions). We then picked the distri-

bution which gave the bigger point to point error.

The value obtained for the systematic error are shown in tables 5.10 and 5.11.

5.5.4 Radiative Correction

The systematic uncertainties will be determined for the Radiative Correction checking the

shift induced by our particular montecarlo generator. For this reason we will compare the

results from our event generator and the original version [47]. Both montecarlo are imple-

mented with DIFFRAD to determine the radiative correction in vector meson production.
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Point to Point error (%)

Iron Carbon

Q2 bin 5GeV 4GeV 5GeV

1 1.5 2.2 1.7

2 0.2 1 0.5

3 1.6 0.8 1.7

4 1.5 - -

5 1.7 - -

Table 5.10: Background Subtraction: Point to Point systematic errors for different Q2 bins,
different targets and different beam energies

Normalization error (%)

Iron Carbon

5GeV 4GeV 5GeV

All Q2 bins 0.5 0.1 0.7

Table 5.11: Background Subtraction: Normalization systematic errors for different targets
and different beam energies

The systematic error for this correction are shown in tables 5.12 and 5.13

5.5.5 Target Window Correction

In order to determine the systematic error on the Target Window Correction, we assumed a

10% uncertainty induced by the determination of the Transparency ratio through a fitting

procedure on Aα−1. This hypothesis follows from other measurement of this dependence

(see for example [15]). Propagating this uncertainty through the equation 5.26, one obtains

for this correction a normalization systematic error of 0.25%.
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Point to Point error (%)

Iron Carbon

Q2 bin 5GeV 4GeV 5GeV

1 1.0 1.1 1.1

2 0.5 - -

3 - 1.4 0.7

4 1.0 - -

5 1.8 - -

Table 5.12: Radiative Correction: Point to Point systematic errors for different Q2 bins,
different targets and different beam energies

Normalization error (%)

Iron Carbon

5GeV 4GeV 5GeV

All Q2 bins 0.3 0.5 0.5

Table 5.13: Radiative Correction: Normalization systematic errors for different targets and
different beam energies
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Chapter 6

RESULTS AND DISCUSSION

In the previous chapter we have defined the procedure for well determine the cross section

ratio between two separate target for ρ0 electroproduction. In this chapter I will show how

we determine the Nuclear Transparency in this experiment. I will then test the theoreti-

cal conjecture expressed in chapter 1, where was stated the independence of the Nuclear

Transparency from the range of Coherence Lengths reached in this experiment. After this I

will finally show the results for the experimental Nuclear Transparency dependence on Q2

and I will compare them with the model from Frankfurt, Miller and Strikman (FMS) (see

section 1.3.4 at page 16 of this thesis).

6.1 Definition of our Transparency effect

The EG2 experiment run with two targets at the same time, in order to compare the cross

sections obtained from nuclei of mass number A (in this experiments with had enough

statistic for Iron and Carbon) with the one determined from Deuterium.

T ρ
0

A =
(
Nρ0

A

LintA
)

(
Nρ0

D

LintD
)

(6.1)

In equation 6.1 Nρ0

A and Nρ0

D are the extracted number of ρ0 from the two targets. LintA is

the integrated luminosity for the target A and is defined as:

LintA = nnucleonsA

Qint
qe

(6.2)

nnucleonsA represents the number of nucleons in target A and is obtained from its properties

nnucleonsA = ρA × rA ×NAv (6.3)
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where ρA is the density of the material, rA is its thickness (see table 2.1) and NAv is

Avogadro’s number. The other terms of equation 6.2 are qe, the single electron charge, and

Qint, the integrated charge deposited while collecting data from target A. Using the fact

now that we measure the ρ0 produced from both targets at the same time, we can simplify

equation 6.1, and obtain for the Nuclear Transparency:

T ρ
0

A =
(
Nρ0

A
ρA×rA )

(
Nρ0

D
ρD×rD )

(6.4)

Other systematic effects are attenuated or canceled from this simultaneous measurement

and have already been determined (see section 5.5 ).

6.2 Coherence Length dependence in this experiment

To test the Coherence Length dependence of the Transparency ratio measured in this ex-

periment, we have considered the distribution of Q2 vs lc (see figure 6-1). In order to see

the contamination of the Q2 dependence of the bins in lc, we decided to study two different

intervals in Q2:

• 1.0GeV 2 < Q2 < 1.6GeV 2

• 1.0GeV 2 < Q2 < 2.2GeV 2

The results are shown in figures 6-1, 6-2 , 6-3 , 6-4. No lc dependence is seen with our

statistical precision. This behavior was expected for the particular kinematical range in-

vestigated by the EG2 experiment (see figure 1-4 and 1-5 at page 9). To understand

this one needs to compare the kinematical range of Q2 and ν of the EG2 experiment (

0.9GeV 2 < Q2 < 2GeV 2 and 2.2GeV < ν < 3.5GeV ) with the one of the other experiment

which searched for Color Transparency using ρ0, the HERMES measurement. In this ex-

periment was observed a dependence on the Coherence Length (see figure 1-20). This was

due to the fact that the HERMES experiment is in a Q2, ν range which was right on the

region where the Coherence Length effect was important (0.8GeV 2 < Q2 < 4.5GeV 2 and
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5GeV < ν < 24GeV )). The length inspected by the EG2 experiment is ≤ 1fm, which is

similar to a nucleon size. For this reason, the Coherence length effect, which considers the

contribution of other nucleons to the production of the ρ0 vector meson, was not important

in the EG2 experiment.

Figure 6-1: The lc vs Q2 distribution is
shown here for the Iron target. At first we
will consider the region in the shadow, char-
acterized by 1.0GeV 2 < Q2 < 1.6GeV 2. In
this region we will determine the experimen-
tal transparency ratio dependence on lc (see
figure 6-2 on the right)
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Figure 6-2: Nuclear Transparency ratio as
a function of lc (here expressed in GeV −1,
1GeV −1 = 0.193 fm). The data-set does
present a induced Q2 dependence in the lc
binning. To avoid it I consider two differ-
ent Q2 range. In this plot is shown the data
with 1.0GeV 2 < Q2 < 1.6GeV 2(see figure
6-1). The data does not show any depen-
dence in lc, as expected from Glauber the-
ory.

6.3 Nuclear Transparency dependence in Q2

We can finally determine the Nuclear Transparency ratio in the EG2 experiment. In our

data analysis we discover that the correction due to the acceptance/efficiency of the detec-

tor/reconstruction/analysis was really important (see figure 5-28 at 101). For this reason

we have determined our final result with the two methods as explained in section 5.2.
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Figure 6-3: The lc vs Q2 distribution is
shown here for the Iron target. In shadow
is selected the region 1.0GeV 2 < Q2 <
2.2GeV 2. In this region we will determine
the experimental transparency ratio depen-
dence on lc (see figure 6-4 on the right)
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Figure 6-4: Nuclear Transparency ratio as
a function of lc (here expressed in GeV −1,
1GeV −1 = 0.193 fm). In this plot is
shown the data with 1.0GeV 2 < Q2 <
2.2GeV 2(see figure 6-3). The data also in
this case does not show any dependence in
lc, as expected from Glauber theory.

6.3.1 Acceptance correction: results with two different methods

The comparison between the two methods are shown in figures 6-5, 6-6, 6-7. The two

methods don’t present great difference, also if one can notice some common feature in this

comparison:

• The error of the correction which use the “bin migration” effect is slightly bigger than

the other measurement

• The points with “bin migration” effect have a common shift to higher values of Nuclear

Transparency ratio.

This lack of differences between the two methods can be imputed to the fact that, in order to

define the Nuclear Transparency, we considered ratios between contemporary measurements

on two different targets. Due to the kinematical similarities of the data from the two targets,

one can conclude that the migration affects them similarly. It will get then mostly canceled

when one determines the ratio.

For these reasons, I have decided to consider the result obtained from the acceptance cor-

rection with “bin migration” as an addition to the systematic uncertainties on the Nuclear
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Figure 6-5: Comparison of Nuclear Transparency ratio for Carbon data at 5GeV and de-
termined with two different acceptance correction (see section 5.2 of this thesis). In green
is shown the result obtained with a “bin by bin” acceptance correction. In red is shown the
one obtained considering also the “bin migration” effect. The data is plotted with errors
due to statistical and point to point systematical (added in quadrature). The colored bad in
the bottom represents the systematical error identified before as normalization (see section
5.5 of this thesis). This last systematical error causes a common shift in all the point of the
distribution, and does not contribute to the physical behavior of the Nuclear Transparency
ratio (for this reason is not included with the other error).

Transparency. The systematic uncertainties due to the model for the acceptance correction

are shown in tables 6.1 and 6.2.

6.3.2 Final results and comparison with the theoretical model

After we compared the results with two different models for the acceptance correction,

we have now a good confidence that this correction is well understood. The correspondent

systematic error induced by this last correction will not affect too much the error previously

obtained. The final results are shown in figures 6-9, 6-8 and 6-12. In these plots we
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Figure 6-6: Comparison of Nuclear Transparency ratio for Iron data at 4GeV and deter-
mined with two different acceptance correction (see section 5.2 of this thesis). In green is
shown the result obtained with a “bin by bin” acceptance correction. In red is shown the
one obtained considering also the “bin migration” effect. The data is plotted with errors
due to statistical and point to point systematical (added in quadrature). The colored bad in
the bottom represents the systematical error identified before as normalization (see section
5.5 of this thesis). This last systematical error causes a common shift in all the point of the
distribution, and does not contribute to the physical behavior of the Nuclear Transparency
ratio (for this reason is not included with the other error).

have added the theoretical predictions from the model from L. Frankfurt, G.A. Miller, M.

Strikman (FMS, see section 1.3.4). This model corrects its values with the possibility of

decay of the ρ0 inside the nucleus. For this reason we don’t need to correct our results for

this effect. The analysis of these results can be resumed as follows:

• The result for Iron at 4GeV (figure 6-8) shows an increase in Nuclear Transparency

with a parallel increase in Q2. From the FMS model it is not expected a great

influence of the Color Transparency effect in this kinematical range. Still, the increase

shown with Q2 cannot be interpret with a Glauber Calculation for the Coherence
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Figure 6-7: Comparison of Nuclear Transparency ratio for Iron data at 5GeV and deter-
mined with two different acceptance correction (see section 5.2 of this thesis). In green is
shown the result obtained with a “bin by bin” acceptance correction. In red is shown the
one obtained considering also the “bin migration” effect. The data is plotted with errors
due to statistical and point to point systematical (added in quadrature). The colored bad in
the bottom represents the systematical error identified before as normalization (see section
5.5 of this thesis). This last systematical error causes a common shift in all the point of the
distribution, and does not contribute to the physical behavior of the Nuclear Transparency
ratio (for this reason is not included with the other error).

Length range touched by this data-set. A χ2 study on this result rejects the Glauber

model calculation with a confidence level of 42% (Degree Of Freedom = 3). This

value has been determined using a one sided confidence level (see equation 6.6). Tha

Glauber prediction has been determined using experimental cross section and does

not estimates any parameter from the Nuclear Transparency data determined in the

EG2 experiment.

χ2 probability distribution with k DOF = f(χ2, k) =
1

2k/2 Γ(k2 )
x
k
2
−1 exp (−χ

2

2
)

(6.5)
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Point to Point error (%)

Iron Carbon

Q2 bin 5GeV 4GeV 5GeV

1 0.5 0.3 0.5

2 0.3 - -

3 - 0.3 0.1

4 0.1 - -

5 0.1 - -

Table 6.1: Acceptance correction (“bin migration” vs “one by one bin”) : Point to Point
systematic errors for different Q2 bins, different targets and different beam energies

Normalization error (%)

Iron Carbon

5GeV 4GeV 5GeV

All Q2 bins 0.2 0.3 0.2

Table 6.2: Acceptance correction (“bin migration” vs “one by one bin”): Normalization
systematic errors for different targets and different beam energies

Clevel =

∫ χ2

0 f(χ2, k) dχ2∫∞
0 f(χ2, k) dχ2

(6.6)

• The result for Carbon at 5GeV (figure 6-9) shows also an increase in Nuclear Trans-

parency with a parallel increase in Q2. The FMS model predicts at this energy a

separation between the expected values with a Glauber model and the ones expected

with the implementation with Color Transparency. The data follows better the curve

representing the FMS model with CT. It is important to enhance again the fact that

the increase of the Nuclear Transparency with Q2 cannot be explained with models

with Glauber calculations (in this particular kinematical range). A χ2 study on this

result rejects the Glauber model calculation with a confidence level of 81% (DOF =

3).
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Figure 6-8: The Nuclear Transparency ratio for Iron and Deuterium targets with beam
energy of 4GeV is plotted here as a function of Q2. Theoretical previsions with a model
from L. Frankfurt, G.A. Miller, M. Strikman (FMS, see section 1.3.4 of this thesis) are also
plotted to better interpret the data. The blue curve represents the theoretical prevision
with a Glauber based model (NO CT). From this theory one is expected to see a more
constant behavior with a variation in Q2. If one adds to this model the properties of Color
Transparency one obtains a dependence on the Nuclear Transparency ratio respects to Q2

(red curve). The data for Iron at 4GeV shows an increase in Q2 which cannot be interpret
using a Glauber model. From the FMS model one does not expect in this kinematical region
an important signal of Color Transparency. A χ2 study in this result rejects the Glauber
model calculation with a confidence level of 42%.

• The result for Iron at 5GeV (figure 6-12) is the one more significant, because it ana-

lyzes the target combination with the highest statistic (see table 2.3 at page 47). The

difference respect to the expected behavior from a Glauber calculation is important.

The curve obtained from the FMS model with Color Transparency effects follows the

increase with Q2 shown by the data. The slope for the higher Q2 points well describe

the behavior of the data, indicating that, in this range, the model well delineate the

evolving in Q2 of the conditions of the Point Like Configuration. The data presents

consistently higher values for the part with higher Q2 respect to the one predicted by

124



/c)2 (GeV2Q
0.8 1 1.2 1.4 1.6 1.8 2 2.2

T

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

FMS Model (NO CT)
FMS Model (CT)

Figure 6-9: The Nuclear Transparency ratio for Carbon and Deuterium targets with beam
energy of 5GeV is plotted here as a function of Q2. Theoretical previsions with a model
from L. Frankfurt, G.A. Miller, M. Strikman (FMS, see section 1.3.4 of this thesis) are also
plotted to better interpret the data. The blue curve represents the theoretical prevision
with a Glauber based model (NO CT). From this theory one is expected to see a more
constant behavior with a variation in Q2. If one adds to this model the properties of
Color Transparency one obtains a dependence on the Nuclear Transparency ratio respects
to Q2 (red curve). The data for Carbon at 5GeV shows an increase in Q2 which cannot
be interpret using a Glauber model. A χ2 study in this result rejects the Glauber model
calculation with a confidence level of 81%.

the FMS model. A χ2 study on this result rejects the Glauber model calculation with

a confidence level of 94% (DOF = 5).

• The result with Carbon at 5GeV for the Nuclear Transparency as a function of Q2

can be compared with the HERMES Nitrogen data (see figure 1-21 at page 29). In

order to compare these two different data-sets we still need take into account the

fact that the two experiments have different kinematical ranges. The result found

for the slope of the Carbon data is (0.039 ± 0.017stat ± 0.034syst)GeV
−2 (see figure

6-10) is consistent within the limited statistical precision with the slope found from

the HERMES Nitrogen data, (0.089± 0.046± 0.020)GeV −2. The result with Iron at
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Figure 6-10: The Nuclear Transparency ratio for Carbon and Deuterium targets with beam
energy of 5GeV is plotted here as a function of Q2. The error bars in each point show
the different contribution from statistical error (black) and systematic point to point error
(red). The data is fitted with a linear function (black line). The result of the fit gives for
the slope for the Nuclear Transparency as a function of Q2 a value of (0.039 ± 0.017stat ±
0.034syst)GeV

−2

4GeV and 5GeV for the Nuclear Transparency dependence on Q2 is a more precise

measurement. This is consequence of the higher statistic obtained in this data-set.

The value determined for the slope is (0.0495 ± 0.0069stat ± 0.0124syst)GeV
−2 (see

figure 6-11).

6.4 Conclusions

In this thesis we studied the onset of Color Transparency in ρ0 electroproduction through

different nuclei. The effects of Color Transparency were observed in the data obtained from

different targets configuration. An increase in Q2 of the measured Nuclear Transparency

ratio cannot be interpreted, in the kinematical range of the EG2 experiment, with the

hadron’s picture of nuclear interaction with matter (Glauber model). To describe this

behavior one needs to implement this model with effects from Quantum Chromodynamics.
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Figure 6-11: The Nuclear Transparency ratio for Iron and Deuterium targets with beam
energy of 4GeV (blue) and 5GeV (green) is plotted here as a function of Q2. The error bars
in each point show the different contribution from statistical error (black) and systematic
point to point error (red). The data is fitted with a linear function (black line). The result
of the fit gives for the slope for the Nuclear Transparency as a function of Q2 a value of
(0.0495 ± 0.0069stat ± 0.0124syst)GeV

−2

This effects are important in correcting the hadron’s picture also for the energies analyzed in

this experiment. This was important to see, because the same effects were firstly predicted

just at higher energies. At lower energies one cannot rely solely on perturbative Quantum

Chromodynamics, but one needs to create models which extrapolate to this kinematical

range the properties determined through perturbative QCD. For this reason an existing

model [2], which gives good agreement also in similar experiments (see [15] and [14]), was

used to test our results. The model well interprets the increase in Q2 seen in our data.
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Figure 6-12: The Nuclear Transparency ratio for Iron and Deuterium targets with beam
energy of 5GeV is plotted here as a function of Q2. Theoretical previsions with a model
from L. Frankfurt, G.A. Miller, M. Strikman (FMS, see section 1.3.4 of this thesis) are also
plotted to better interpret the data. The blue curve represents the theoretical prevision
with a Glauber based model (NO CT). From this theory one is expected to see a more
constant behavior with a variation in Q2. If one adds to this model the properties of Color
Transparency one obtains a dependence on the Nuclear Transparency ratio respects to Q2

(red curve). The data for Iron at 5GeV shows a consistent increase in Q2 with a better
statistical significance respect to the other configurations inspected in this experiment. This
is due to the higher statistic available in this particular configuration. The difference respect
to the expected behavior from a Glauber calculation is important. The data presents
consistently higher values for the part with higher Q2 respect to the one predicted by
the FMS model. A χ2 study in this result rejects the Glauber model calculation with a
confidence level of 94%.
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