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Abstract

The step by step procedure for deriving geometrical fiducial cuts for electrons in the data taken
during the CLAS/E2 run period, with beam energy E = 4.4 GeV is discussed. These data were
obtained without CLAS Cerenkov counter in the Level 1 trigger of CLAS DAQ and therefore the
fiducial functions derived are completely different from the functions obtained earlier for CLAS/E1
runs. Also, in the present approach, the fit function does not fix the energy bin width. By this we
achieve increased flexibility and better accuracy of the cut.



Introduction

The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab is designed to measure multi-
particle final states [1]. It is based on six iron-free superconducting coils that generate a toroidal magnetic
field in between. Each of the six gaps between the coils is equipped with a set of drift chambers (DC) [2]
and scintillator counters (SC) [3] from 10° to 145° in polar angle, and Cerenkov counters (CC) [4] and
electromagnetic calorimeters (EC) [5] from 10° to 45°.

In electron scattering experiments with CLAS, the recorded event is accepted for physics analysis if
the scattered electron is identified. For electron identification, in most cases, valid signals in all four
detectors are required. Electron detection efficiency around the mid plane in each sector is reproducible
in the GEANT (GSIM) simulations. Due to the complicated readout structures of EC and CC, detection
and reconstruction efficiencies are not well understood in the regions close to the torus coils, and close
to the dead channels of detector elements. In order to minimize systematic uncertainties in the physics
analysis it is important to accept events in the fiducial region of the detector, where efficiencies are
understood.

Fiducial cuts for electrons in ep scattering experiments were derived earlier by V.Burkert et. al. [6]
for the CLAS/E1 runs. These cuts define a region in the production (6, ¢) space for a given momentum,
where detection efficiency is almost constant on ¢ and can be reproduced in simulations. Although these
functions should, in principle, scale with momentum and the magnetic field, it is not always possible to
use the same function due to different run conditions (bad channels, target position, trigger, etc.).

Data taken at beam energy E, = 4.4 GeV during the CLAS/E2 run do not have Cerenkov counters in
the Level 1 trigger of the CLAS DAQ. The main motivation for excluding CC from the trigger is that a lot
of E2-related physics proposals are focused around the kinematics of quasi-elastic, dip and A production
regions, starting from momentum transfer Q2 as low as possible. Scattered electron momentum in these
conditions is generally above the pion threshold in CC, and e/ rejection relies on forward electromagnetic
calorimeters only. Excluding CC cut from electron identification makes the fiducial region very different
from the previously defined region for E1. In this report we describe the procedure for electron selection
and determination of the fiducial volume of the detector without Cerenkov counters.

Our Method

We define a “cut” as a two-dimensional doubly-curved surface passing through the three-dimensional
(p, 0, ¢) space, enveloping the region that satisfies certain selection criteria. In our case, as we stated
above, the criterion would be “uniform acceptance”. We define apriori our “uniform acceptance” plateau
as the region contained between the steep rise and the sudden drop on a counts vs. ¢ histogram drawn
at given p and 6”.

To determine the equation of the cut surface, we do the following:

1. select "good” electrons with cuts on the forward electromagnetic calorimeter (EC)

2. select the flat acceptance regions for small bins of momenta in the 8 and ¢ space.

3. fit the final coefficients with smooth functions of (p, 6 and ¢).

As a note to the reader: frequent references in this text point towards the web-based documentation
([7] and [8]). The website contains complete documentation, programs and all the graphics to illustrate
the procedure. Some file names are given in the text in the event that the reader would like to customize
our codes and procedure for his(hers) fiducial cuts.



Step One: Forward Calorimeter Cut

As was mentioned above only forward EC information will be used for electron identification. Since
the ratio of the deposited energy in EC to the momentum of the particle measured in DC (Eg¢/p) is the
main tool for 7/e rejection, we will define the fiducial region as a region where the electron distribution
is constant on ¢ after the cut on deposited energy. Consequently, regions where due to shower leakage
measured energy is less than it should be are eliminated. (There are other cuts that will be used for final
electron selection, like energy depositions in the inner and outer parts of EC, or the width of a shower.
These quantities remain stable in the fiducial region defined above.)

The scintillators in the forward electromagnetic calorimeter are grouped in three planes, denoted as
U, V and W. The scintillator bars in the U plane have an orientation perpendicular to the beam axis,
while the scintillators in the V and W planes are rotated by 120°. In Fig.1 the distribution of electrons on
the calorimeter sides is shown. This defines a natural system of coordinates that is the most convenient
to use for defining geometrical cuts.

It is useful to study the variation of the ratio Fgc/p versus calorimeter coordinates. Such a plot is
shown in Fig.2, with p > 0.9 GeV. Plots for certain energy subranges are available for reference in [7].

As a first step electrons with Egc/p > 0.2 will be selected (see Fig.2). In Fig.3 a magnified plot of
the above mentioned distribution is shown. For clarity, only electrons with momentum p > 3.0 GeV are
kept here, given that electrons with momentum in this range are detected mainly at forward angles, and
are more sensitive to our uvw cut.

It is seen that in the regions v > 371 and w > 407, the ratio Fgc/p drops dramatically. This is due to
the electron shower leakage out of the sides of the calorimeter. Similar plots had been made for individual
sectors and they are available in [7]. Cuts on the edges v > 20 cm, v < 371 cm and w < 407 cm
were applied to select events with Egc/p > 0.2 GeV. (It was concluded that using different cuts for each
sector was not necessary.) Figure 4 shows such a cut (u > 20,v < 371, w < 407 and Egc/p > 0.2).

We have studied the behavior of the Fj, / Eoy: ratio versus the EC coordinates (with Ejy,, Eoye being
the energy loss in the inner and the outer parts of the EC, respectively). But, as it can be found in [7],
these quantities do not depend on the position on EC, after the above cuts.

Our final criteria for the preparatory cuts would then be:

u>20,v < 37, w <407, Egc/p > 0.2 (1)

Figure 5 illustrates how this uvw cut reflects onto the energy spectrum of the electrons that we detect.

The conditions in equation (1) are imposed on the data used to derive the fiducial cut, to select a set
of well identified electrons. They will not explicitly show in the final cut, which is purely geometrical.
Also, in the physics analysis, data below 0.9 GeV and 16° in 6 will be discarded, since this is below the
trigger threshold and is clearly outside of the acceptance region of CLAS.

Step Two: Finding the Uniform Acceptance Region

After we have selected “good” electrons, as described in the previous section, we proceed to study the
dependence of the detector acceptance on angles and energy.

Figure 6 shows some typical (¢, ) plots after the forward calorimeter cut has been applied.

The energy range was divided in small bins and then for each energy bin and for each sector two-
dimensional distribution of events in 6 and ¢ plane is studied. In figure 7 a number of such distributions
are presented. Regions with black points were cut out with cuts described above. The energy bin width
is set to 100MeV. The energy bin n is defined as the range between 0.1 x n and 0.1 X (n + 1) GeV.



The histograms in Fig.6 exhibit a well contoured semicircular region, surrounded by a fuzzy region.
We want to select this solid area of the histogram, which is the flat acceptance region, and discard the
blurred area surrounding it. For this, we will fit its contour with a function ¢(0, E,,, s), where E,, is the
energy bin, s the sector and € the angle.

Of course, before this, one needs to accurately define what means “flat”. For this purpose, what we
do is slice these two-dimensional plots in theta bins' of 1°, and fit these histograms with a trapezoidal
function.

The function used is:

pa(z —p2)/(po —p2) if p2 <z <po

pa(x —p3)/(p1 —p3) if p1 <z <ps
0 if z<p2 or z>ps

Some typical trapezoids (fitted #-slices) are shown in Fig.8. More can be found in [7]. Now, on these
plots, the top horizontal side of the trapezoid is our “flat” acceptance region.

We found the procedure to give us reliable results in over 90% of the fits. The procedure is automatic
and the code used (concat.cc) can be found in [8]. The few bad fits that occurred were not corrected
manually, because the results (parameters) of these first generation fits are fitted as a function of
afterwards. This way, both statistical and procedural errors are automatically minimized.

The coordinates of the edges of the top of the trapezoid, for each energy bin and sector are written
to a file named fiducial 00.dat. This is a text file organized on six columns, each row containing the
following: a version stamp, the energy bin number, 6 bin, sector number, py and p;, where parameters
po and py are the coordinates of the edges of the top of the trapezoid (see Fig.8).

Then we use another code (fcfit.cc [8]) to fit these points with a function ¢ = ¢(0, Ey, s), for every
energy bin and sector. The procedure is completely automatic.

The function ¢ = ¢(6, E,,, s) that most accurately describes the contours in Fig.6 is [9]:

6(0) = { 8(1 —((0—to)b/a+1)"1) iff)otliarivfsgl (3)

where the coefficients a, b,t; contain the dependency on E, and s. The actual angle ¢ is obtained by
scaling this formula for each sector:

Jo1(0, B, s) = 60(s — 1) F ¢(0) (4)

b

where the sign + stays for the upper branch (with coefficients ag, b1,to,t1) and the
lower (described by ag, bo, to, t1)-

A plot illustrating this step is in Fig.9. These second generation set of parameters are saved into
the file fiducial 01.dat, which is organized as follows: each row contains a version stamp, energy bin
number, the limits ¢g and ¢; and the ag, by, a1, b1 curvature and width parameters for the lower and upper
halves, respectively (please see equations (3) and (4) and Fig.9).

—’ sign is for the

Step Three: Smooth It

What is new in the present procedure of deriving the fiducial cuts is that we did not limit ourselves
to obtaining a set of empirical values but we tried to find a systematics that would give us a consistent
set of parameters.

Ibin n is from n degrees (°) to (n + 1) degrees



We have obtained 62 different 4-parameter functions ¢ = ¢(6, s), one for each sector and energy bin
considered. Next, we want to fit the coeflicients of these functions in order to obtain a smooth function
¢ = fo,1(0,E, s) that is to be included in our TE2AnaTool package for current use in analysis. For this,
we have another code, fc2fit.cc [8], that reads the output tables of the previous step to produce the
final parameter file.

We remind the reader that the function in equation (3) is used to define the acceptable angular range
(¢, 0) for the detected electron. In the present approach, we did not require that the accepted region is
symmetric with respect to the mid-plane of the sector, so we have two sets of parameters a, b for each
energy bin and sector (upper and lower halves in Fig.9).

One believes that the first two parameters, ¢y and ¢;, should reflect the geometry of the detection
system. The parameters a and b are related to the range in ¢ that is acceptable for defined values of 6,
i.e. to the geometry of our detector. Thus, we expect that the variation of these coefficients with the
energy E must be smooth. In figure 10, one finds evidence that these dependencies can be described by
smooth functions.

The fitting procedure that gives us the final set of parameters to, t1,aq,bg, a1 and by is completely
automatic. To describe the energy dependence of to and t; we use a power function:

ti = CliECZi 1= O, 1 (5)

and for the other four parameters a polynomial function of degree five:

Pi(E) = cnE" (6)

However, in the final version of the code, there is a switch that one can use to set always the lower limit
for t; at 45°, which is actually the hardware limit on 6 in the EC for straight tracks.

The third generation parameters all go into a file named: fiducial 02.par, that is read at initial-
ization by the routine SetFiducialCutParameters(), included in the TE2AnaTool package. This
file is organized on eight columns: first is a tag, second is the sector number, and the next six are the
coefficients of the functions in equations (5)% and (6).

Figure 11 shows the overall result of the fiducial cut as made by using the final version of the routine.
Please notice the narrowing in the forward region.

In some sectors (see Fig.11), we notice some small gaps. These are better corrected for in a separate
procedure that eliminates faulty scintillators and bad DC regions, therefore, the present version of fiducial
cuts procedure does not contain this feature. Figure 12 shows some energy bins after the fiducial cut.

It is interesting to see the energy distribution of the scattered electron after these cuts. Figure 13
compares the shape of the distributions at various stages of our procedure. Let us take a look at it: we
lose quite a lot of data with the uvw cut, but, again, this is “bad” data. The EFgc/p condition cuts out
even more, but we see that it doesn’t bias the final distribution.

We notice a disproportionate loss of high energy electrons that is explained by the forward peaking of
the high energy electrons, at angles where the CLAS acceptance is small, not flat and hence cut out by
the fiducial cuts. Therefore, we would need more detailed methods for obtaining our acceptance function
at energies above 3.5 GeV.

Summary

We prepared the terrain with the forward calorimeter cut, eliminating by this the electrons that were

2obviously, only two of the rows corresponding to the power functions contain nonzero values



not properly detected. We split the angle-energy range in small bins and find the contour of the region
of interest, that is the constant acceptance plateau. We get from this a set of curves. What is inside the
contour passes as OK, what is out is discarded.

Further, we wanted to eliminate the constraint of a fixed bin width, which is not very convenient if
we want to ensure flexibility of the analysis software. Hence, we fitted each of the coefficients of these
functions with a function depending only on energy and sector number. The parameters of the latter
functions were saved in a file destined to the CLAS_PARMS directory or the database.

Somewhere at the beginning of his(hers) analysis code, the user must initialize the fiducial cut function
by calling SetFiducial CutParameters(), which reads the values from the PARMS file mentioned above.

Then, what our EFiducialCut(p) function does for an event characterized by momentum p and angles
0 and ¢, is calculating the coefficients ¢;(E) (where ¢; stands for {to,t1,a0,1,b0,1}), and inserting them
into the contour functions ¢ = fo.1(¢c;,0). If our ¢ is contained in the interval (fo(E,0), f1(E,0)), the
event is accepted, else the event is rejected.

The user must call the function EFiducialCut(El3Vect) in a conditional statement, where the argu-
ment El3Vect passed is the electron momentum 3-vector.
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Abbreviations used in text

TJNAF is the acronym of Thomas Jefferson National Accelerator Facility
GSIM is the CLAS version of the GEANT Simulation Package

EC stands for Electromagnetic Calorimeter, but we understand by it the foward calorimeter only. For the

Large Angle Calorimeters we use the acronym LAC
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Figure 1: Range of the calorimeter coordinates u, v, w. Dimensions on abscissa are in centimeters.
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sector 4 is shown. For the others sectors, please consult [7]
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Figure 11: Overall result of the cut. One can see that an asymmetrical shape resulted in some sectors. The

fuzzy edges are due to bin overlap.
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Figure 12: Typical plots illustrating the result of the cut. Plase notice that some are asymmetrical. For
more, please consult [7]
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Figure 13: Electron energy spectra at various stages of the procedure: before applying any cut (1), after
the uvw cut (2), after the EC cut on uvw and E/p (4), final (3). On the last one, the region p <0.9 GeV is
ignored. E.; is in GeV.

19



