CLAS-NOTE 2001-003

The CLAS Calibration Database @

Harut Avagyan, Mark Ito, Greg Riccardi, Riad Suleiman
May 28, 2003

Abstract

This note describes the design and use of the CLAS calibration database (CalDB). The
database contains all the necessary calibration constants needed to analyze CLAS data. As
such, its primary function is to respond to queries for these constants. The values returned

will in general depend on the run number of the data being analyzed. This note supersedes
CLAS-NOTE 2000-008]1].

(@) This note is available in a web version at http://clasweb. jlab.org/caldb/caldb/ .

1

Contents

1 Introduction 4
2 Database Tables 4
3 Interface Routines for Analysis Jobs and Detector Calibrators 9
3.1 The Application Programmer Interface 9
3.1.1 [Imitialization Routine 9
3.1.2 Read Routineso 9
3.1.3 Write Routineso o L 11

3.2 Controlling CalDB from the Command Line 12
3.2.1 caldbshowsystems.pl 13
3.2.2 caldb_show_subsystems.pl 14
3.2.3 caldbshow.tems.plo o oo 15
3.2.4 caldbshow_tem_nfo.plo L. 15
3.2.5 caldbshowssi.plo 16
3.2.6 caldbshowsetsrun.pl 17
3.2.7 caldbshowsetsiitem.pl 18
3.2.8 caldbsshowrunranges.plo L 19
3.2.9 caldbshow history.pl 20
3.2.10 caldb_show_constants_ run.pl 000 21
3.2.11 caldb_show_constantsid.pl 23
3.2.12 caldb_show RUN_CONTROL.pl 24
3.2.13 caldb_show_changes.pl L. 25
3.2.14 caldb.link constant_set.pl L. 26
3.2.15 caldb_write_constant_set.pl 28
3.2.16 caldb_write_and link.plo oL 29
3.2.17 caldb_make run_index.pl 31
3.2.18 caldb_copy_ranges.pl Lo 32
3.2.19 caldbcopyrun.plo Lo 34
3.2.20 caldb_exportrun.pl oL 36
3.2.21 caldbimportset.pl oo 37
3.2.22 caldb_show_tables.pl oo oL 39
3.2.23 caldb_add officer.pl Lo 40
3.2.24 caldb_add.system.pl.o 40
3.2.25 caldb_add_subsystem.pl o000 L 41
3.2.26 caldb_add.item.pl L L 42
3.2.27 caldb_delete_items.plo 43
3.2.28 caldb_delete_changes.pl L. 43
3.2.29 caldb.drop_table.pl oo 46

3.3 Browsing CalDBonthe Web L. 46
3.4 Graphical Interface for Viewing Constants 47

Backward Compatibility with the Map

4.1 Map-Emulation Library 00 oL

4.2 'Translating Between the Map and the CalDB
421 MaptoCalDB
422 CalDBtoMap

Alternate Versions of Constants

5.1 Creating an Alternate Version

5.2 Using Alternate Versions L oL
5.2.1 Argument to Command-Line Scripts
5.2.2 Environment Variables for Map-emulation Routines
5.2.3 Tcl Variablesin RECSIS

Access Control

Database Deployment

7.1 Authoritative Versiono Lo
7.2 Replication: Maintaining a Mirror Site
7.3 Backupsof the CalDB L

Online Constants: Updating the RUN_CONTROL System

47
47
48
48
a0

52
93
93
93
23
o4

54

56
o6
o6
o8

59

1 Introduction

The database is implemented in MySQL[2]. There are user-interface functions for both
analysis programs and detector calibrators.

The Mapmanager[3] is the system we used before development of the database to hold
and retrieve the calibration constants. In fact the initial version of the database is a copy
of the constants and run correlations held in the Map at the time of conversion on January
29, 2001.

The design has the following features:

e Run indexed lookup of constants by analysis jobs.

e Ability for users to use and modify private copies of the run index without copying the
constants themselves.

e Keep a change log: user, date, time, comment.

e Backward compatibility with the Mapmanager.
Some broad technical details:

e The default database server is clasdb. jlab.org.

e Database servers should run MySQL version 3.23.6 or greater. Older versions do not
have true floating point storage of FLOAT values.

e The default location for all tables is the calib database.

2 Database Tables

The database tables are shown schematically in Fig. 1 and are listed explicitly in Tables 1
and 2. This structure for the database supports all of the features mentioned in Section 1.
There are several remarks to make on the database structure:

Unique item key. Each item in the database has a unique key (itemId) even though it may
not have a unique item name. Given a particular triplet of system name, subsystem
name and item name, the key can be retrieved from a join of the System, Subsystem
and Item tables.

Intermediate level of referencing. Run numbers are not kept in the same table as the
constants. To get constants for a particular item and run one queries the run index
table (RunIndex) for the corresponding item value key (itemValueId). One then gets
the constants from the appropriate constant set table (e. g., DC_DOCA_t max_Sector3),
looking them up with the item value key.

This correspondence between a range of run numbers and a constant set is called a
link. Each row of a run index table is thus a link. Each link is specific to a particular
item.

New constants are entered as a new entry to an item value table. A new set ne-
ver overwrites an old set, even if it is meant to supersede the old one. Rather, the
change is made in the run index table; the same old runs are made to point to the new
constant set.

“Freeze the constants” by saving a version of the run index table. To get the fro-
zen version of constants, one uses the frozen version of the run index table. Since old
constant sets are not deleted, the frozen version remains viable even after subsequent
“changes” to the constants. Recall that these “changes” are really only additions of
new constant sets and editing of the non-frozen run index table. There is no need to
duplicate the constants themselves when freezing.

History is kept by time stamping run index changes. Like the constants themselves,
entries in the run index table are never discarded. As such, a particular item/run
combination may have several constant sets associated with it. To get the “latest”
version, one chooses the entry with the most recent time stamp. To get the version as
of a particular date, one chooses the entry that was the most recent as of that date.

Overlapping run ranges: last one wins. Since entries in the run index table are never
discarded and new entries are not in anyway bound to match the minimum and maxi-
mum run specifications of previous entries, it is possible, in fact likely, that for a given
item there will be run index entries that have partially overlapping run range specifi-
cations. For example assume that there is an item with the following (partially listed)
entries in the run index table:

runMin runMax itemValueld time
1000 6000 234 2001-01-29 14:15:16
2000 4000 235 2001-02-02 02:03:04
3000 5000 236 2001-03-15 08:09:10

The second line says “At around two in the morning on February 2, 2001, we were
instructed that we should use the constant set with ID number 235 for all runs between
2000 and 4000 inclusive for this item.” Note that this instruction conflicts with that
on the first line. And that the third line conflicts partially with that on the second
line. The conflicts are always resolved by using the last instruction given, where “last”
in this context means the entry with the greatest value of time. So if we are analyzing
run 3100, the instruction of March 15 is followed and constant set 236 is used. For run
1800, only the January 29 instruction applies so constant set 234 will be used. Note
that this behavior is not intrinsic to MySQL; it has been coded into all of the access
routines.

Effective run ranges vs. specified run ranges. In the example of the previous section,
three sets of specified run ranges from the run index table are displayed: 1000-6000,
2000-4000 and 3000-5000. Given the conflict-resolution scheme described there, we get
the following effective run ranges:

System
column name ‘ type ‘ example ‘ comment
systemlId int 4 primary key, auto-increment
systemName | varchar | “DC_DOCA”
description text “from the Map”
Subsystem
column name ‘ type ‘ example ‘ comment
subsystemlId int 17 primary key, auto-increment
subsystemName | varchar | “t_max”
systemlId int 4 reference to System
description text “from the DC_DOCA Map”
[tem
column name ‘ type ‘ example ‘ comment
itemId int 44 primary key, auto-increment
itemName varchar | “Sector2”
subsystemld | int 17 reference to Subsystem
length int 36 number of elements
type varchar | “float”
description text “from the DC_DOCA Map,”
subsystem t_max”

Table 1: Informational tables.

Effective run min. Effective run max. itemValueld
1000 1999 234
2000 2999 235
3000 5000 236
5001 6000 234

Note that the beginning and end runs of effective run ranges may not appear in any of
the specified run ranges, 7. e., they may not appear in the run index table. They are a

consequence of the conflict-resolution algorithm and describe the effective behavior of
the CalDB.

Private versions of constants are easy to make. Individual users can copy and modify

a run index table for private use. This is especially useful for a developer of a new
calibration scheme. He can modify his private tables to use prototype sets of constants
without affecting the rest of the collaboration. These private constants will live in the
public item value tables, but no one besides the developer will be pointing to them.
To promote a private version to the public version, he need only insert a new entry in
the public run index table.

Item
System Subsystem iteml g
systeml d* subsysteml d* itemName
systemName subsystemName ISUb%;] stemid
description systemid tsgget
description description
Runlndex
RunindexId*
minRun
maxRun
itemld
itemValueld
officer
time
comment

systemName_subsystemName_itemName

itemValueld*
author

time
minRunSource
maxRunSource
comment
v_0001

v_nnnn

Figure 1: Schematic drawing of the database tables. Crow’s feet indicate the “one” side
and “many” side of one-to-many relationships. Primary keys are indicated with asterisks.
There are actually many instances of the systemName_subsystemName_itemName table; there
is one for each item in the database. The constant values themselves are the columns named
v_0001, v_0002,....

RunIndex
column name ‘ type ‘ example ‘ comment
RunIndexId | int 682 primary key, auto-increment
minRun int 20020
maxRun int 20062
itemld int 44 reference to Item
itemValueld | int 50 reference to item value table
officer varchar “dbmanager”
time timestamp | 20010117120303
comment text “copied from Map”
DC_DOCA _t_max_Sector2
column name ‘ type ‘ example ‘ comment
itemValueld int 50 primary key, auto-increment
author varchar “davidl”
time timestamp | 20000502165717
minRunSource | int 20030
maxRunSource | int 20040
comment text “dc3 with new t_max def’n”
v_0001 float 192.58
v_0036 float 1347.67

Table 2: Functional tables. The DC_DOCA _t_max_Sector2 table is an example of an item
value table. Item value tables are the ones that actually hold the constants. There is an
item value table in the database for each item.

3 Interface Routines for Analysis Jobs and Detector
Calibrators

3.1 The Application Programmer Interface

There is a set of application programmer interface (API) routines to access and modify
the constants. At this writing, only a Perl API is available. We will need routines in C,
and probably C++ eventually.(® We list the functions that are available. Arguments are
specified in a language-independent form here.

3.1.1 Initialization Routine

Connect to Server: Establishes a connection to the MySQL database server.

Inputs Output

hostname connection handle/structure
user

password

3.1.2 Read Routines

Show Systems: Lists all systems. If subsystem and/or item are provided, only list systems
correlated with the specified subsystem /item.

Inputs Output (per system)

subsystem systemld

item systemName
description

Show Subsystems: Lists all subsystems. If system and/or item are provided, only list
subsystems correlated with the specified system/item.

Inputs Output (per subsystem)
system subsystemld
item subsystemName

systemlId

description

Show Items: Lists all items. If system and/or subsystem are provided, only list items
correlated with the specified system /subsystem.

(b)There exists a working C library to do Map emulation. See Section 4. In this section we are only
concerned with the functions designed with the CalDB structure in mind; the native-CalDB routines have
different arguments than for the native-Map routines.

Inputs Output (per item)
system itemld
subsystem itemName
subsystemlId
length
type
description

Show Constants By Run: Dumps constants for a particular item from a specified version
of the database as of a specified date.

Inputs Output

run number constant values
index table name

date

system

subsystem

item

Show Constants By ID: Dumps constants for a particular item from a specified version
of the database as of a specified date. Look up is done by item value ID rather than
run number, date and run index table name.

Inputs Output
itemValueld constant values
System

subsystem

item

Show Constant Sets By Run: Shows the item value ID’s for all items that are relevant
for a particular run from a specified version of the database as of a specified date.

Inputs Outputs (per item)
run number system
index table name subsystem
date item
itemValueld
starting run
ending run
officer
link date
comment

Show Constant Sets by Item: Shows all item value ID’s for a particular item including
those not linked to runs.

10

Inputs Outputs (per item)
systemName itemValueld
subsystemName author
itemName date
minRunSource
maxRunSource
comment

Show Run Ranges By Item: Shows run ranges for a particular item from a specified
version of the database as of a specified date and in specified run range.

Inputs

system
subsystem

item

index table name
date

minRun

maxRun

Outputs (per run range)
itemValueld

starting run

ending run

officer

link date

comment

Show Item Value History: Shows all item value ID’s that were ever valid for a specified
item and run for a specified version of the database.

Inputs

system
subsystem

item

run number
index table name

3.1.3 Write Routines

Outputs (per constant set)
itemValueld

link date

starting run

ending run

officer

comiment

Write Constants: Makes a new set of constants. Does not link the constants to any run
number. Author and creation date are entered automatically.

Input
system

subsystem

item

Output
itemValueld

constant set
source starting run
source ending run

comment

Link Constants To Run Range: Makes the correspondence between a particular set of
constants and a particular run range for a specified item and version of the database.

11

Input Output
itemValueld RunIndexId
starting run

ending run

system

subsystem

item

index table name

comment

3.2 Controlling CalDB from the Command Line

Perl scripts to give command line control of the CalDB using the Perl API are available.

Arguments are specified on the command line in the form argname=argvalue. No
white-space is allowed before or after the = sign. For example, for a mythical script called
caldb_script.pl that takes three arguments x, x1abel and comment:

caldb_script.pl x=7.9 xlabel=distance comment=’just an example’

sets the value of x to 7.9, the value of x1abel to “distance” and the value of comment to the
string “just an example”. Here the single quotes are used to pass the blanks in comment to
the script from the Unix shell.

There are some command arguments that appear in more than one script. They are
described here in detail. When they appear in the subsections on the individual commands,
their descriptions will be brief and refer back to this section.

help Most of the commands will type out a usage message if the help argument is set to a
non-zero value, e. g.,

caldb_show_systems.pl help=1

inputFile For the commands that write constants into the CalDB, this argument specifies
the name of the input file. The internal format of the file for float’s and int’s should
have one constant per line, with each line ending in a newline character. For char’s,
the entire contents of the file will be written as a character string, including newline
characters. Because of this, the file can contain multiple lines.

runIndexTable If this argument is present, then all database queries will use the specified
run index table rather than the default, calib.RunIndex. This argument allows access
to frozen or private versions of constants via use of a private run index. Run indices
can be specified as runIndexTable=tablename if the table is in the calib database. If
not, then the specification takes the form runIndexTable=databasename.tablename.
For example:

12

Specification Result
runIndexTable=RunIndex Use the RunIndex table of the calib
database. This is a restatement of
the default.
runIndexTable=RunIndexE1l Use the RunIndexE1l table of the
calib database.
runIndexTable=calib user.RunIndexKjoo Use the RunIndexKjoo table of the
calib_user database.

time This argument specifies the historical time to use when making all queries. Changes
to the CalDB that came later than this time will be ignored. Supplying this argument
invokes the history mechanism of the CalDB. Since entries that post-date the specified
time are ignored, the results are equivalent to those that would have been obtained by
asking for the latest version at the specified time. More simply, you get the answer to
the question “What did the constants look like back then?”. Time can be specified
using a variety of formats. See the MySQL manual|2] for details, but all of the following
are valid time specifications:

time=’2001-06-12 15:25:59’
time=01/06/12
time=20010612152559
time=010612

hostname This names the database server to use. If supplied, the script will connect to the
MySQL server running on the specified node for all database queries. If not supplied,
the server defaults to clasdb.jlab.org. This allows non-Lab users and/or CalDB
developers to use local database mirrors.

user This specifies the username to use when connecting to the MySQL server. It does not
affect the value of the author value in the constant set tables or of the officer value in
the run index tables. Those are derived from the user’s environment. It is only relevant
for write operations. For read operations the MySQL username clasuser is used. By
default, if the write is to the calib_user database (see Section 6), calib_user is used.
Otherwise the value of the USER shell environment variable is used.

3.2.1 caldb_show_systems.pl

Shows systems in the CalDB. With no arguments, all systems are displayed. If subsystem
and/or item are specified, then only those systems which have matching subsystems and
items are displayed.

The usage message is:

usage:

caldb_show_systems.pl [subsystem=<subsystem>] [item=<item>] \
[hostname=<hostname of db server>] [oneline=<non-zero>] \
[help=<non-zero>]

13

example:
caldb_show_systems.pl

The arguments are:

subsystem (optional) If this is supplied, systems are restricted to those that contain the
specified subsystem. The restriction is and’ed with the item restriction if that is
present.

item (optional) If this is supplied, systems are restricted to those that contain the specified
item. The restriction is and’ed with the subsystem restriction if that is present.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

oneline (optional) If set to a non-zero value, the systems will be displayed on one line,
separated by spaces.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

3.2.2 caldb_show_subsystems.pl

Shows subsystems in the CalDB. With no arguments, all subsystems are displayed. If system
and/or item are specified, then only those subsystems which have matching systems and
items are displayed.

The usage message is:

usage:

caldb_show_subsystem.pl [system|s=<subsystem>] [item|i=<item>] \
[hostname=<hostname of db server>] [oneline=<non-zero>] \
[help=<non-zero>]

example:
caldb_show_subsystems.pl

The arguments are:

system or s (optional) If this is supplied, subsystems are restricted to those that are con-
tained in the specified system. The restriction is and’ed with the item restriction if
that is present.

item or i (optional) If this is supplied, subsystems are restricted to those that contain the
specified item. The restriction is and’ed with the system restriction if that is present.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

oneline (optional) If set to a non-zero value, the subsystems will be displayed on one line,
separated by spaces.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

14

3.2.3 caldb_show_items.pl

Shows items in the CalDB. With no arguments, all items are displayed. If system and/or
subsystem are specified, then only those items which have matching systems and subsystems
are displayed.

The usage message is:

usage:

caldb_show_items.pl [system=<system>] [subsystem=<subsystem>] \
[hostname=<hostname of db server>] [oneline=<non-zero>] \
[help=<non-zero>]

example:
caldb_show_items.pl

The arguments are:

subsystem (optional) If this is supplied, items are restricted to those that are contained in
the specified system. The restriction is and’ed with the subsystem restriction if that
is present.

item (optional) If this is supplied, items are restricted to those that are contained in the
specified subsystem. The restriction is and’ed with the system restriction if that is
present.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

oneline (optional) If set to a non-zero value, the items will be displayed on one line, sepa-
rated by spaces.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

3.2.4 caldb_show_item_info.pl

Shows various properties of a particular item. The item must be specified by system, sub-

system and item. The script will print out the systemId, subsystemId, itemId, length,

type and description for the specified item. See Table 1 for descriptions of these values.
The usage message is:

usage:
caldb_show_item_info.pl system|s=<system> subsystem|ss=<subsystem> \
item|i=<item> [hostname=<hostname of db server>] [help=<non-zero>]

example:
caldb_show_item_info.pl system=DC_DOCA subsystem=xvst_params item=SL3

The arguments are:

system (required) The system specification.

15

subsystem (required) The subsystem specification.
item (required) The item specification.
hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example given in the usage message above produces the following output:

systemld = 4

subsystemId = 23

itemId = 87

length = 24

type = float

description = from the DC_DOCA Map, subsystem xvst_params

3.2.5 caldb_show _ssi.pl

Show existing system/subsystem/item (SSI) combinations along with the item ID number.
If the system, subsystem and/or item arguments are specified, then only those SSI's that
are consistent with the arguments are shown.

The usage message is:

purpose: show system/subsystem/item combinations and corresponding item ID’s

usage:

caldb_show_ssi.pl [system|s=<system>] [subsystem|ss=<subsystem>] \
[item|i=<item>] [hostname=<hostname of db server>] [help=<non-zero>]

example:
caldb_show_ssi.pl s=DC_DOCA ss=t_max

The arguments are:
system or s (optional) System specification. If omitted, all systems are considered.

subsystem or ss (optional) Subystem specification. If omitted, all subsystems are consid-
ered.

item or s (optional) Item specification. If omitted, all items are considered.
hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.

The example command in the usage message above gives:

16

DC_DOCA
DC_DOCA
DC_DOCA
DC_DOCA
DC_DOCA
DC_DOCA
DC_DOCA

3.2.6 caldb_show_sets_run.pl

Given a run number, information for all relevant constant sets are shown, spanning all valid
system /subsystem/item (SSI) combinations. In other words, for the given run and any one
SSI, a unique constant set is identified via the run index table. That constant set is specified
by its itemValueId. This script displays this constant set identifier, along with other related
information, and does so for every SSI in the CalDB.

For each SSI combination the following are displayed: systemName, subsystemName,
itemName, runMin, runMax, itemValueld, officer, time and comment. See Tables 1 and 2
for descriptions of these values. Note that time and comment here are from the RunIndex
table. Note further that runMin and runMax are also from the RunIndex table and as such
define the relevant specified run range and not the effective run range. See Section 2 for a

t_max
t_max
t_max
t_max
t_max
t_max
t_max

comment
Sectorl
Sector?2
Sector3
Sector4
Sectorb
Sector6

49
43
44
45
46
47
48

discussion of the difference.
The usage message is:

usage:

caldb_show_sets_run.pl r=<run> [it=<run index table>] \
[t=<time of validity>] [hostname=<hostname of db server>] \

[help=<non-zero>]

alternate flag names:
r or run for run number

it or runIndexTable for run index table name
t or time for time of validity

example:

caldb_show_sets_run.pl r=20000

The arguments are:

run (required) The run specification.

runIndexTable or it (optional) The name of the run index table to use. The default value
is calib.RunIndex. See Section 3.2 above.

time (optional) The historical time to use in database queries. The default value is (effec-
tively) the current time. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

The example command in the usage message above gives:

using runIndexTable = RunIndex

CALL_CALIB
copied
CALL_CALIB
copied
CALL_CALIB
copied

TAG_SCALER

pedestals unc 1 1000000 1 dbmanager 2001-01-29 15:59:03

from Map

pedestals value 1 1000000 1 dbmanager 2001-01-29 15:59:03

from Map

RFoffset rf2rfi10ffset 10865 1000000 1 dbmanager 2001-01-29 15:59:02
from Map

PSEff value 19983 20032 10 dbmanager 2001-01-29 17:25:20
copied from Map
TAG_SCALER RTSL value 19983 20032 10 dbmanager 2001-01-29 17:25:21
copied from Map
TAG_SCALER TagEff value 19983 20032 10 dbmanager 2001-01-29 17:25:21
copied from Map

(Many lines have been omitted for brevity. Comments have been printed on separate

lines to fit on the page.) The last line tells us that for run 20000, the TAG_SCALER, TagEff,
value item uses constant set 10 (the itemValueId), and that that assignment was copied
from the Map by dbmanager on January 29, 2001.

3.2.7 caldb_show_sets_item.pl

Shows all constants sets by ID (the itemValueId) for a particular system/subsystem/item,
including those not linked to runs. For each constants set, the values of itemValueld,
author, time, minRunSource, maxRunSource and comment from the appropriate constant
set table (7. e., item value table) will be shown.

The usage message is:

Makes a list of all constant set ID’s for the specified
system/subsystem/item.

Usage:
caldb_show_sets_item.pl system=<system> subsystem=<subsystem> item=<item> \
[hostname=<hostname of db server>] [help=<non-zero>]

example:
caldb_show_sets_item.pl system=DC_DOCA subsystem=xvst_params item=SL3

The arguments are:
system (required) The system specification.

subsystem (required) The subsystem specification.

18

item (required) The item specification.
hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.

The example command in the usage message above gives:

1 dbmanager 2001-01-29 16:05:23 25190 1000000 ’copied from Map’
2 dbmanager 2001-01-29 16:05:23 24088 25189 ’copied from Map’
3 dbmanager 2001-01-29 16:05:23 24037 24087 ’copied from Map’

298 lachniet 2001-05-22 11:41:53 NULL NULL ’Map-style put’
299 lachniet 2001-05-23 18:29:52 NULL NULL ’Map-style put’
300 lachniet 2001-05-25 15:39:31 NULL NULL ’Map-style put’

This is simply a complete list of all constant sets that have ever been entered into the
CalDB for the DC_DOCA, xvst_params, SL3 item. No information about the run numbers to
which the sets should be applied is displayed. (Recall that minRunSource, maxRunSource
are comment-like fields.)

3.2.8 caldb_show _run ranges.pl

For a given system/subsystem/item (SSI) combination, this script shows all effective run
ranges. See Section 2 for a discussion of effective vs. specified run ranges. For each range, the
values of effective begin run and effective end run are displayed along with the corresponding
values of itemValueId, officer, time, the constant values (optionally) and comment from
the run index table. See Table 2 for descriptions of the run-index-resident values.

The usage message is

purpose: shows effective run ranges for a specific item

usage:

caldb_show_run_ranges.pl system|s=<system> subsystem|ss=<subsystem> \
item|i=<item> [runMin|min=<run min>] [runMax|max=<run max>] \
[const=<non-zero>] [first=<non-zero>] \
[runIndexTable|it=<run index table>] [time|t=<time of validity>] \
[hostname=<hostname of db server>] [help=<non-zero>]

example:
caldb_show_run_ranges.pl s=mom_corr ss=theta_func i=sector6

The arguments are:

system (required) The system specification.

19

subsystem (required) The subsystem specification.
item (required) The item specification.

const (optional) If set to a non-zero value, the constants themselves will be displayed, along
with the other information about the run ranges.

first (optional) If set to a non-zero value, and if const is non-zero, then only the first
constant of the array of constants will be displayed. If const is not set or set to zero,
this argument has no effect.

runIndexTable or it (optional) The name of the run index table to use. The default value
is calib.RunIndex. See Section 3.2 above.

time (optional) The historical time to use in database queries. The default value is (effec-
tively) the current time. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:

using runIndexTable = RunIndex

1 11799 3 dbmanager 2001-01-29 17:26:25 copied from Map

11800 11899 2 dbmanager 2001-01-29 17:26:25 copied from Map
11900 1000000 1 dbmanager 2001-01-29 17:26:25 copied from Map

This tells us that for the mom_corr/theta_func/sector6 item, there are three effective run
ranges defined: 1-11799, 11800-11899 and 11900-1000000. These ranges use constant sets 3,
2 and 1 respectively (these are the itemValueId’s). These assignments were all copied from
the Map on January 29, 2001.

3.2.9 caldb_show_history.pl

For the given system/subsystem/item (SSI) combination and run, show each (historical) time
that the calibration constants have changed. For each change, the time, minRun, maxRun,
itemValueld, officer and comment values from the run index table are shown. See Table 2
for descriptions of these values. Note that the itemValueId uniquely identifies the constant
set that was applied at the time. The information is displayed in reverse chronological order.

usage:

caldb_show_history.pl s=<system> ss=<subsystem> i=<item> r=<run number> \
[it=<run index table>] [hostname=<hostname of db server>] \
[help=<non-zero>]

alternate flag names:

s or system for system name
ss or subsystem for subsystem name

20

i or item for item name
r or run for run number
it or runIndexTable for run index table name

example:
caldb_show_history.pl s=DC_DOCA ss=t_max i=Sector3 r=23000

The arguments are:
system (required) The system specification.
subsystem (required) The subsystem specification.
item (required) The item specification.
run (required) The run specification.

runIndexTable or it (optional) The name of the run index table to use. The default value
is calib.RunIndex. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:

using runIndexTable = RunIndex
2001-03-26 15:07:13 22950 23049 271 claschef copied
2001-01-29 15:59:39 22933 23034 8 dbmanager copied from Map

This tells us that for DC_LDOCA/t_max/Sector3, claschef changed the constants for run 23000
to use constant set 271 (the itemValueId). This was done on March 3, 2001 at around 3 pm.
At that time, the intention was to apply constant set 271 for all runs from 22950 to 23049
inclusive. Before that we were using constant set 8 for run 23000. That assignment was
copied from the Map by the dbmanager.

3.2.10 caldb_show_constants_run.pl

Shows the values of the calibration constants themselves for the specified system/subsystem /-
item and run number. By default, the constant set ID (itemValueId), author, time,
runMinSource, runMaxSource and comment from the constant set table are printed before
the constant values are printed out. See Table 2 for a description of these values.

The usage message is:

usage:
caldb_show_constants_run.pl s=<system> ss=<subsystem> i=<item> r=<run> \
[it=<run index table>] [t=<time of wvalidity>] \
[hostname=<hostname of db server>] [g=<non-zero to suppress some info>] \
[help=<non-zero>]

21

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
r or run for run number
it or runIndexTable for run index table name
t or time for time of validity
q or quiet for suppression of extra information

example:
caldb_show_constants_run.pl s=DC_DOCA ss=t_max i=Sector6 r=20000
The arguments are:

system (required) The system specification.
subsystem (required) The subsystem specification.
item (required) The item specification.

run (required) The run specification.

runIndexTable or it (optional) The name of the run index table to use. The default value
is calib.RunIndex. See Section 3.2 above.

time (optional) The historical time to use in database queries. The default value is (effec-
tively) the current time. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

quiet (optional) A non-zero value will suppress printing of column headings and other extra
information.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:

53 dbmanager 20010129155955 19861 20019
copied from Map

210.748

213.066

215.41

15624.74
15639.98
1555.38

This tells us that for run 20000, constant set 53 is used, it was copied from the Map on
January 29, 2001 by dbmanager, and that constant set 53 is composed of the values shown.

22

3.2.11 caldb_show_constants_id.pl

Shows the values of the calibration constants themselves for the specified system/subsystem/-
item and constant set ID. By default, the constant set ID (itemValueId), author, time,
runMinSource, runMaxSource and comment from the constant set table are printed before
the constant values are printed out. See Table 2 for a description of these values.

The usage message is:

usage:

caldb_show_constants_id.pl s=<system> ss=<subsystem> i=<item> \
id=<constant set ID> [hostname=<hostname of db server>] \
[gq=<non-zero to suppress some info>] [help=<non-zero>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
id or constantSetId for constant set ID
q or quiet for quiet mode

example:
caldb_show_constants_id.pl s=DC_DOCA ss=t_max i=Sector6 id=253

The arguments are:
system (required) The system specification.
subsystem (required) The subsystem specification.
item (required) The item specification.

constantSetId (required) Identifies the constant set whose contents are to be displayed.
This is the itemValueId field of the constant set table.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

quiet (optional) A non-zero value will suppress printing of column headings and other extra
information.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:

253 lachniet 20010216134855
Map-style put

148.789

150.425

152.08

23

1225.21
1237 .46
1249 .84

This tells us that for DC_DOCA/t_max/Sector6, constant set 253 was written to the CalDB
using the Map-emulation libraries (“Map-style put”) on February 16, 2001 by lachniet and
is composed of the values shown.

3.2.12 caldb_show_RUN_CONTROL.pl

Shows the values of beam energy and torus and minitorus currents per run in a given run
range.
The usage message is:

usage:
caldb_show_RUN_CONTROL.pl min=<run min> max=<run max> \
it=<run index table> \
[t=<time of wvalidity>] \
[hostname=<hostname of db server>] \
[help=<non-zero>] [gq=<non-zero to suppress some info>]

alternate flag names:
min or runMin
max or runMax
it or runlIndexTable for source run index table name
t or time for time of validity
q or quiet for suppression of extra information

example:
caldb_.show_RUN_CONTROL.pl min=31500 max=32170 it=calib_user.RunIndexe6

The arguments are:
min (required) Minimum run number
max (required) Maximum run number
it (required) source Runlndex file
hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

The example command in the usage message above gives:

24

> caldb_show_RUN_CONTROL.pl min=31520 max=31525 it=calib_user.RunIndexe6
using RunIndex = calib_user.RunIndexe6 from clasdb.jlab.org

run# Energy(MeV) Torus mini-Torus
31620 5769.59 2250 6000
31621 5769.59 2250 6000
31622 5769.59 2250 6000
31623 5769.59 2250 6000
31624 5769.59 2250 6000
316256 5769.59 2250 6000

This shows the energy,torus and minitorus currents per run.

3.2.13 caldb_show_changes.pl

Shows changes made to a run index from a specified time in the past to the present. Op-
tionally, the system, subsystem, item, and/or officer can be specified to modify the search
for changes. If any of these is omitted, the search is conducted over all of the corresponding
possibilities. Also a specific run index can be specified as the target of the search. By default,
only the first three lines of any comments are displayed, for brevity, but the full comment
can be displayed if desired.

The usage message is:

purpose: Shows changes to a run index back to a specified time for
specified items entered by a specified officer.

usage:
caldb_show_changes.pl time|t=<time to go back to> [s|system=<system name>] \
[subsystem|ss=<subsystem name>] [item|i=<item name> \
[officer|o=<officer name>] [runIndexTable|it=<run index table name>] \
[fullComment=<non-zero>] [quiet=<non-zero>] \
[hostname=<hostname of db server>] [help=<non-zero>]

example:
caldb_show_changes.pl t=2001/12/1 s=DC_DOCA ss=t_max i=Sector6

The arguments are:
time or t (required) All changes which occurred after this time will be reported.
system or s (optional) System specification. If omitted all systems will be searched.

subsystem or ss (optional) Subsystem specification. If omitted all subsystems will be
searched.

25

item or i (optional) Item specification. If omitted all items will be searched.

officer or o (optional) Officer specification. If omitted, changes from all officers will be
reported.

runIndexTable or it (optional) The name of the run index table to use. The default value
is calib.RunIndex. See Section 3.2 above.

fullComment If set to a non-zero value all of the lines of the run index comment will be
displayed, rather than the first three.

quiet (optional) If set to a non-zero value, the description of the search conditions will be
omitted in the output.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:

connecting to host clasdb.jlab.org
examining entries from system DC_DOCA
subsystem t_max
item Sector6
from run index table RunlIndex
entered by any officer
going back to 2001/12/1
system = DC_DOCA, subsystem = t_max, item = Sector6
runs 29808-29808, set 551, linked 2001-12-04 17:06:38 by nozarm
comment: execution host:enigma
host 0S:LinuxRH7
host time:Tue Dec 4 17:06:34 2001
runs 29808-30299, set 551, linked 2001-12-04 17:37:54 by marki
comment: Copied from run 29808 of RunIndex as of 2037-1-1.

3.2.14 caldb_link_constant_set.pl

Makes the correspondence between runs and constant sets. For a specified system/sub-
system/item and a specified constant set ID (the itemValueId), the script will link the ID
to the specified run range. Programs analyzing all runs in the run range will use the linked
constants. When making the link, a comment is mandatory.

The usage message is:

usage:
caldb_link_constant_set.pl s=<system> ss=<subsystem> i=<item> min=<run min> \
max=<run max> id=<item value id number> c=<comment> \
it=<run index table name> [user=<MySQL user name>] \
[hostname=<hostname of db server>] [help=<non-zero>]

26

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
min or runMin
max or runMax
id or constantSetId
c or comment
it or runlndexTable for run index table name

example:
caldb_link_constant_set.pl s=mom_corr ss=theta_func i=sector6 min=100 \
max=200 id=3 c="just a link example" it=calib_user.RunIndexJunk

The arguments are:

system (required) The system specification.

subsystem (required) The subsystem specification.

item (required) The item specification.

runMin (required) The minimum run of the run range specification.
runMax (required) The maximum run of the run range specification.

constantSetId (required) The identification number (ID) of the constant set to be asso-
ciated with the specified run range. This must be an existing constant set. To see a
list of existing constants sets use the caldb_show_sets_item.pl command, described
in Section 3.2.7.

comment (required) A text comment. The comment should address the reasons for applying
these constants to the specified run range rather than the way in which they were
produced.

runIndexTable or it (required) The name of the run index table to use. See Section 3.2
above.

user (optional) The username to use when connecting to the MySQL server. See Section 3.2
above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:
runIndexId = 186189

The example links constant set 3 of the mom_corr/theta_func/sector6 item to runs 100
through 200 inclusive in the run index calib_user.RunIndexJunk. The printout identifies
the entry in that table that makes the link.

27

3.2.15 caldb_write_constant_set.pl

Writes a set of constants into a constant set table. The relevant system/subsystem/item
and the name of the file which contains the constants must be specified. There are also two
required comment fields: source run minimum and a general comment. Note that this script
does not associate the constants with a run range. (See caldb_link constant set.pl or
caldb write _and link.pl for a scripts which do that.)

The usage message is:

usage:

caldb_write_constant_set.pl s=<system> ss=<subsystem> i=<item> \
c=<comment> [srmin=<source run min>] [srmax=<source run max>] \
f=<file with constants> [hostname=<hostname of db server>] \
[help=<non-zero>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
srmin or sourceRunMin
srmax or sourceRunMax
c or comment
f or inputFile

example:

caldb_write_constant_set.pl s=mom_corr ss=theta_func i=sector6 \
srmin=1000 srmax=2000 c="just an example" f=const_file.dat \
hostname=claspc2. jlab.org

The arguments are:
system (required) The system specification.
subsystem (required) The subsystem specification.
item (required) The item specification.

sourceRunMin (optional) A comment field that records the minimum run used in the pro-
duction of the constants. This value does not affect the run range to which constants
are applied. It is purely informational.

sourceRunMax (optional) A comment field that records the maximum run used in the pro-
duction of the constants. This value does not affect the run range to which constants
are applied. It is purely informational.

comment (required) A text comment. The comment should address the production of the
constants being added, rather than the run ranges to which they should be applied.

28

inputFile (required) The name of the file that contains the calibration constants them-
selves. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:

Data from inputFile const_file.dat loaded to claspc2.jlab.org
(itemValueld = 9)

This tells us that the new constant set ID (itemValueId) in the constant set table
(mom_corr_theta_func_sector6 in this example) is 9.

3.2.16 caldb_write_and link.pl

Does both a write of constants to the apropriate constant set table and links the resulting

constant set to the specified run range. The system /subysystem/item, run range, and name

of the file that contains the constants must be specified. In addition the comment for the

run index and the source run#(srmin) must be supplied. If you want to write and link

separately, use caldb_write_constant_set.pl and/or caldb_link constants_set.pl.
The usage message is:

usage:

caldb_write_and_link.pl s=<system> ss=<subsystem> i=<item> min=<run min> \
max=<run max> ci=<comment for run index> f=<file with constants> \
it=<run index table name> \
[srmin=<source run min>] [srmax=<source run max>] \
[cc=<comment for constant set table>] \
[user=<MySQL user name>] \
[hostname=<hostname of db server>] [help=<non-zero>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
min or runMin
max or runMax
ci or commentIndex
srmin or sourceRunMin
srmax or sourceRunMax
cc or commentConstants
f or inputFile
it or runIndexTable for run index table name

example:

29

caldb_write_and_link.pl s=mom_corr ss=theta_func i=sector6 min=1000 \
max=2000 srmin=1400 srmax=1450 f=const_file.dat \
it=calib_user.RunIndexJunk \
ci=’linking new constants’ cc=’creating new constants’ \
hostname=claspc2. jlab.org

The arguments are:
system (required) The system specification.
subsystem (required) The subsystem specification.
item (required) The item specification.
runMin (required) The minimum run of the run range specification.
runMax (required) The maximum run of the run range specification.

commentIndex (required) Text comment that will go into the run index table. This is
same as the comment argument of caldb_link constant_set.pl script described in
Section 3.2.14. The text will serve as a default string for the commentConstants
argument.

inputFile (required) The name of the file that contains the calibration constants them-
selves. See Section 3.2 above.

runIndexTable or it (required) The name of the run index table to use. See Section 3.2
above.

sourceRunMin (optional) A comment field that records the minimum run used in the pro-
duction of the constants. This value does not affect the run range to which constants
are applied. It is purely informational.

sourceRunMax (optional) A comment field that records the maximum run used in the pro-
duction of the constants. This value does not affect the run range to which constants
are applied. It is purely informational.

commentConstants (optional) Text comment that will go into the constant set table. This
is same as the comment argument of caldb_write_constant_set.pl script described
in Section 3.2.15. If not supplied, the value of the commentIndex argument is used.

user (optional) The username to use when connecting to the MySQL server. See Section 3.2
above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.

The example command in the usage message above gives:

30

Data from inputFile const_file.dat loaded to claspc2.jlab.org
calib_user.RunIndexJunk (runIndexId = 194428, itemValueld = 6)

This confirms the hostname, claspc2.jlab.org, and the run index table,
calib_user.RunIndexJunk. For the “write”, the new constant set ID (itemValueId) in the
constant set table (mom_corr_theta func_sector6 in this example) is 6. For the “link”, the
new run index ID is 194428.

3.2.17 caldb_make_run_index.pl

Makes a new run index, copying entries from the main run index. Use this command to
create private run indices. A partial copy, valid for a user-selected range of runs, can be
made.

Note that all relevant rows, even those that were only valid in the past, will be copied.
Once a copy is made, changes to the copy can be made. The history mechanism will work
on the copy transparently.

usage:
caldb_make_run_index.pl table=<run index table name> [db=<database name>] \
[min=<min. run no.>] [max=<max. run no.>] \
[hostname=<MySQL server hostname>] [user=<MySQL username>] \
[help=<non-zero>]

The arguments are:

table (required) The MySQL table name for the new run index. Your choice. Recall that
the main run index table is called RunIndex. Descriptive names are good.

db (optional) The name of the MySQL database in which the new table should be placed.
Recall that the main database is called calib. You cannot put your new table there
unless you are an officer (as described in Section 6). Make sure that you have create
privilege in the database you specify. If db is missing, the database will default to
calib_user. See Section 6 for a description of the calib_user database.()

min (optional) The lowest run for which the copy will be complete. If a run index row is
relevant only for runs less than min, that entry will not be copied to the new run index
table. If min is missing the default is —oo.

max (optional) The highest run for which the copy will be complete. If a run index row is
relevant only for runs strictly greater than max, that entry will not be copied to the
new run index table. If the max is missing the default is +oo.

hostname (optional) The name of the MySQL database server to use. If hostname is not
supplied, the server will default to clasdb. jlab.org.

user (optional) The username to use when connecting to the MySQL server. If user is
not supplied, the username will default to clasuser.

help (optional) If the help argument is non-zero, the usage message will be printed.

(©)Here we are using the technical meaning of “database” in MySQL.

31

3.2.18 caldb_copy_ranges.pl

Copies effective run ranges from one run index table to another. This makes the run-
number/constant-set assignments for the destination run index exactly the same as that for
the source run index for the run ranges and item(s) specified. In other words, analysis done
with the destination run index will yield the same constants as that done with the source
run index (again, for the specified run ranges and item(s)).

If a specific choice of system, subsystem and item are given then only the ranges for that
item will be copied. All items in a subsystem can be copied by specifying allitems for the
item. All items in a system can be copied by specifying allsubsystems for the subsystem
and alltitems for the item.

If only a subset of the run ranges are to be copied, then a minimum and maximum
run must be specified. All run ranges from the source run index which fall within these
bounds will be copied. If the lowest and highest run range found in the source run index
do not match the user-specified minimum and maximum runs, then the copied run ranges
will be truncated to respect the user’s specification. For example, if the source run ranges
are 1000-1999, 2000-2999 and 3000-3999 and the user requests a copy of from run 1500
to run 3499 then the resulting copied run ranges will be 1500-1999, 2000-2999 and 3000-
3499 in the destination run index. Note in this example that the constant assignments for
runs 1000-1499 and runs 3500-3999 in the destination run index will remain unchanged. If
all run ranges are to be copied, then the allruns argument must be set. In this case the
minimum and maximum runs should be omitted. Use caldb_show_run_ranges.pl, described
in Section 3.2.8, to display a list of effective run ranges.

After a summary of the requested copy transaction is printed, the user is prompted for
confirmation before the operation is performed.

There is an argument, nowrite, that, when set to a non-zero value, will suppress all
writes to the database. This can be used to “practice” copy operations; the write operations
requested will be reported on the screen without actually being performed.

The usage message is:

purpose: Copy a set of run ranges from one run index to another. Do so
for one item, all items in a subsystem, or all items in a system.

usage:
caldb_copy_ranges.pl s=<system name> ss=<subsystem name | ’allsubsystems’> \
i=<item name | ’allitems’> \

[min=<run min> max=<run max> | allruns=<non-zero>] \
ris=<source run index table name> \

rid=<destination run index table name> [time=<time strobe>] \
[user=<MySQL user name>] [hostname=<hostname of db server>] \
[nowrite=<non-zero>] [noprompt=<non-zero>] [help=<non-zero>]

note: use nowrite=1 to practice using this script

alternate flag names:
s or system for system name

32

ss or subsystem for subsystem name

i or item for item name

min or runMin

max or runMax

ris or runIndexSrc for source run index table name

rid or runIndexDest for destination run index table name

example:
caldb_copy_ranges.pl s=DC_DOCA ss=t_max i=Sectorl ris=RunIndex \
rid=calib_user.RunIndexMarkIl min=23602 max=23682

The arguments are:

system or s (required) System to copy.

subsystem or ss (required) Subsystem to copy. Specify allsubsystems if run ranges for
all subsystems in the specified system are to be copied. In this case you must specify
item=allitems.

item or i (required) Item to copy. Specify allitems if run ranges for all items in the
specified subsystem(s) are to be copied.

runMin or min (required if allruns is omitted) Minimum run to copy. The lower bound of
the lowest run range copied from the source run index will modified (if necessary) to
match this value.

runMax or max (required if allruns is omitted) Maximum run to copy. The upper bound of
the highest run range copied from the source run index will be modified (if necessary)
to match this value.

allruns (required if runMin and runMax are omitted) Copy all run ranges from the source
run index to the destination run index.

runIndexSrc or ris (required) The name of the source run index. If the database is not
specified, calib is assumed.

runIndexDest or rid (required) The name of the destination run index. The database is
not specified, calib is assumed.

time (optional) Effective time of query on the source run index. Defaults to retrieving the
latest version.

user (optional) Username to use when connecting to the MySQL server. Defaults to the
value of the $USER environment variable.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

nowrite (optional) A non-zero value will supress the actual writes to the database. Useful
for previewing the results of a copy request without actually doing one.

33

noprompt (optional) A non-zero value will supress the prompt of the user for confirmation
before a copy is done. Useful for using this script inside another script.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

The example command in the usage message above gives:

note: use nowrite=1 to practice using this script
info: Copying all run ranges from 23602 to 23682
info: on host clasdb.jlab.org

info: for system DC_DOCA

info: subsystem t_max

info: item Sectorl

info: from run index table calib.RunIndex

info: as of the present time

info: to run index table calib_user.RunIndexMarkI
info: writing is enabled

Are you sure you want to do this? (yes/no) yes
info: subsystem = t_max

info: item = Sectorl

info: linking runs 23602-23621 to constant set 330, runIndexId = 147713
info: linking runs 23622-23624 to constant set 331, runIndexId = 147714
info: linking runs 23625-23681 to constant set 332, runIndexId = 147715
info: linking runs 23682-23682 to constant set 333, runIndexId = 147716

This tells us that four new specified run ranges were defined for the specified system/-
subsystem/item (DC_DOCA/t_max/Sectorl in this case) in the destination run index table
(calib_user.RunIndexMarkI). The constant set ID’s shown are those taken from the source
run index table (calib.RunIndex). The new entries have runIndexId’s from 147713 to
147716 inclusive.

3.2.19 caldb_copy_run.pl

Copies constant set assignments from the source run index to the destination run index. In
the source run index, the assignments corresponding a single specified run are used. In the
destination run index, these assignments are copied to a specified range of runs.

Note that the source and destination run indices may be the same; this case may be
useful when initializing constants for a new run period. For example you may want to use
constants from run 28000 of the main run index for runs 30000 to 40000 of the main run
index as a start at developing constants for the run range 30000-40000.

There is an argument, nowrite, that, when set to a non-zero value, will suppress all
writes to the database. This can be used to “practice” copy operations; the write operations
requested will be reported on the screen without actually being performed.

The usage message is:

function: Links constants to a range of runs (runMin to runMax). Constants
chosen are those assigned to the specified source run number.

34

note: use nowrite=1 to practice using this script

usage:

caldb_copy_run.pl min=<run min> max=<run max> r=<runSource> \
rid=<destination run index table> \
[s=<system>] [ss=<subsystem>] [i=<item>] \
[ris=<source run index table>] \
[t=<time of validity>] \
[hostname=<hostname of db server>] [nowrite=<non-zero>] \
[help=<non-zero>] [gq=<non-zero to suppress some info>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
r or runSource for reference run number
min or runMin
max or runMax
ris or runIndexSource for source run index table name
rid or runIndexDest for destination run index table name
t or time for time of validity
q or quiet for suppression of extra information

example:
caldb_copy_run.pl s=DC_DOCA ss=xvst_params i=SL1 ris=RunIndex \
rid=calib_user.RunIndexJunk r=28000 min=30000 max=40000

The arguments are:
runMin (required) The minimum run of the run range specification.
runMax (required) The maximum run of the run range specification.
runSource (required) The run number of initial run.
system (optional) If not defined all systems will be copied.
subsystem (optional) If not defined all subsystems will be copied.
item (optional) If not defined all items will be copied.
runIndexDest (required) The destination runlndex table.

runIndexSource (optional) The source runlndex table. If not defined calib.RunIndex will
be used.

time (optional) The historical time to use in database queries. The default value is (effec-
tively) the current time. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

35

nowrite (optional) If set to a non-zero value, no new links will be put into the destination
run index. Use this argument to preview the results of a given set of arguments.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

quiet (optional) A non-zero value will suppress printing of column headings and other extra
information.

The example command in the usage message above gives:

hostname=clasdb.jlab.org, user=clasuser

Connection successful: handle: DBI::db=HASH(0x81d7e6c)

info: in calib_user.RunIndexJunk, runs 30000-40000 for DC_DOCA, xvst_params, SL1
now are linked with constant set ID 344, runIndexId is 186843

The example links constant sets used by run 28000 of calib.RunIndex for DC_DOCA,
xvst_params, SL1 to the run range 30000-40000 of the run index calib_user.RunIndexJunk.

3.2.20 caldb_export_run.pl

Exports sets of constants from the source run index to set of text files in certain directory.
In the source run index, the assignments corresponding a single specified run are used. All
constants are copied to the destination directory.

For example you may want to make a backup of certain set of constants from run 28000
from some host.

The usage message is:

function: Exports constants valid for a given run <run> to a directory
caldb_export<run>

usage:
caldb_export_run.pl r=<runSource> \
[s=<system>] [ss=<subsystem>] [i=<item>] \
[it=<source run index table>] \
[t=<time of wvalidity>] \
[hostname=<hostname of db server>] \
[help=<non-zero>] [gq=<non-zero to suppress some info>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
r or runSource for reference run number
it or runlIndexTable for source run index table name
q or quiet for suppression of extra information

example:
caldb_export_run.pl s=DC_DOCA ss=xvst_params i=SL1 it=RunIndex r=28000

36

The arguments are:
runSource (required) The run number of initial run.
system (optional) If not defined all systems will
subsystem (optional) If not defined all subsystems will be copied.
item (optional) If not defined all items will be copied.

runIndex (optional) The source runlndex table. If not defined calib.RunIndex will be
used.

time (optional) The historical time to use in database queries. The default value is (effec-
tively) the current time. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.

quiet (optional) A non-zero value will suppress printing of column headings and other extra
information.

The example command in the usage message above gives:

/group/clas/tools/caldb/caldb_export_run.pl s=DC_DOCA ss=xvst_params i=SL1

it=RunIndex r=28000

using runIndexTable = RunIndex from clasdb.jlab.org

Create new dir caldb_export28000

Now exporting DC_DOCA xvst_params SL1 of RunIndex as of 2037-1-1 to
caldb_export28000

Create new caldb_export28000/DC_DOCA

The example creates (if not available) a directory caldb_export28000 with a subdirec-
tory DC_DOCA and a text file xvst_params_SL1 with constants for subsystem DC_DOCA,
xvst_params (one directory per subsystem if not given) and item SL1 (one file per item if
not given) valid for run=28000 from the runindex table calib.RunIndex from clasdb.jlab.org
(default).

3.2.21 caldb_import_set.pl

Imports sets of constants from the given directory (created by export, see 3.2.20 above) to
the given destination run index. The validity range of imported set is defined by command
line parameters min and max.

For example you may want to import a backup of certain set of constants from saved
files (directory tree created by the export) to a different runindex and/or with a different
validity range.

The usage message is:

37

function: Import constants from a given directory caldb_export<srmin>

usage:
caldb_import_set.pl srmin=<runSource> \
[s=<system>] [ss=<subsystem>] [i=<item>] \
[rid=<destination run index table>] \
[t=<time of validity>] \
[hostname=<hostname of db server>] \
[help=<non-zero>] [gq=<non-zero to suppress some info>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
r or runSource for reference run number
rid or runIndexDest destination run index table name
q or quiet for suppression of extra information
srmin or sourceRunMin source run (defines the directory for input)

example:
caldb_import_set.pl s=DC_DOCA ss=xvst_params i=SL1 rid=calib_user.RunIndextestmap
srmin=28000 min=40000 max=40001 ci=’test’

The arguments are:
srmin (required) The source run number defining the directory name.
runIndexDest (required) The destination runIndex table.
system (optional) If not defined all systems will
subsystem (optional) If not defined all subsystems will be copied.
item (optional) If not defined all items will be copied.

time (optional) The historical time to use in database queries. The default value is (effec-
tively) the current time. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.

quiet (optional) A non-zero value will suppress printing of column headings and other extra
information.

The example command in the usage message above gives:

38

> /group/clas/tools/caldb/caldb_import_set.pl s=DC_DOCA ss=xvst_params

i=SL1 rid=calib_user.RunIndextestmap srmin=28000 min=40000 max=40001 ci=’test’
Reading constants from dir ./caldb_export28000

using runIndexTable = calib_user.RunIndextestmap from clasdb.jlab.org

Now importing DC_DOCA xvst_params SL1 of calib_user.RunIndextestmap

from ./caldb_export28000

0 -1.73055 159.4 0 0.85 1.23981 -7.45891 23.0195 -27.5138 9 4.539 4.285
3.256301.1 000000000

Data from inputFile ./caldb_export28000/DC_DOCA/xvst_params_SL1 loaded
to clasdb. jlab.org calib_user.RunIndextestmap

(runIndexId = 34711, itemValueld = 883)

The example imports constant set for DC_DOCA, xvst_params, SL1 from the directory
./caldb_export28000 to runindex file calib_user.RunIndextestmap with the validity run
range 40000-40001.

3.2.22 caldb_show_tables.pl

Shows all tables in the given database. The user can choose db server, MySQL username
and password. The default is to connect to clasdb.jlab.org as clasuser with no password.
This is actually a very generic script. It can be used to query databases outside the

CalDB.
The usage message is:

usage:
caldb_show_tables.pl database=<database name>
[hostname=<hostname of db server>] [user=<db username>]
[password=<db password>] [verbose=<non-zero for verbose output>]
[help=<non-zero for usage message>]

example:
caldb_show_tables.pl database=calib_user

The arguments are:
database (required) The database specification.
hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

user (optional) The username to use when connecting to the MySQL server. The default
is clasuser.

password (optional) The password to use when connecting to the MySQL server. The
default is the null string.

verbose (optional) A non-zero value enables more detailed printout.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

39

The example command in the usage message above gives:

EG2K_DC_calib_DAVE
RunIndex
RunIndexEG1Pass1

privateRunIndex
private_runindex

This is the complete list (notwithstanding the ellipses) of tables in the calib user database
of the MySQL server on clasdb. jlab.org. As such, it also happens to be a list of all of the
private run indices in the CalDB (that is only because calib_user was chosen as the database
in this example; other choices would display different tables with different interpretations).

3.2.23 caldb_add officer.pl

Adds a new officer by making appropriate additions to the access control tables of the MySQL
server. See Section 6 for a description of officer privileges. You must be a Database Manager
to run this script and it must be run locally on the database server.

The usage message is:

usage:
caldb_add_officer.pl new_user=<new user>

example:
caldb_add_officer.pl new_user=foo

The argument is:

new_user (required) Officer’s MySQL username.

3.2.24 caldb_add_system.pl

Adds a new system.
The usage message is:

function: This script adds a system to CalDB.

usage:
caldb_add_system.pl s=<system> c=<description> \
[hostname=<hostname of db server>]

alternate flag names:

s or system for system name
¢ or comment for system description

40

example:
caldb_add_system.pl s=newGreatSystem c=’important system’

The arguments are:

system (required) The new system name.
comment (required) Description of that system.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
The example command in the usage message above gives:

info: new system newGreatSystem created on clasdb.jlab.org server with
systemId 51.

The example creates an entry newGreatSystem in the System table in the calib database.

3.2.25 caldb_add_subsystem.pl

Adds a new subsystem to an existing system.
The usage message is:

function: This script adds a subsystem to the CalDB. An existing system must
be specified.

usage:
caldb_add_subsystem.pl s=<system> ss=<subsystem> c=<description> \
[hostname=<hostname of db server>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
¢ or comment for subsystem description

example:
caldb_add_subsystem.pl s=newGreatSystem ss=somesubs \
c=’important subsystem’

The arguments are:

system (required) The system name.
subsystem (required) The new subsystem name.
comment (required) Description of that system.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
The example command in the usage message above gives:

info: new subsystem somesubs created for newGreatSystem on clasdb.jlab.org
with subsystemId 272.

41

3.2.26 caldb_add_item.pl

Adds a new item to an existing subsystem.
The usage message is:

function: This script adds an item to the CalDB and creates the
corresponding constant set table

usage:

caldb_add_item.pl s=<system> ss=<subsystem> i=<item> c=<description> \
type=[float|int|char|intblob] length=<length of constant array> \
[hostname=<hostname of db server>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
¢ or comment for system description

example:
caldb_add_item.pl s=newGreatSystem c="int_item8" ss=somesubs i=item8 \
type=int length=10

The arguments are:

system (required) The system name.

subsystem (required) The subsystem name.

item (required) The new item name.

type (required) The item type.

length (required for int/float) The item length.

comment (required) Description of that item.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
The example command in the usage message above gives:

info: new item item8 (itemId=875) created for system newGreatSystem,
subsystem somesubs on clasdb.jlab.org.

As a result item item8 is created for somesubs subsystem of newGreatSystem system.

42

3.2.27 caldb_delete_items.pl

Deletes an item or items. If system, subsystem and item are all specified, then only that one
item will be deleted. If only system and subsystem are specified, that one subsystem will
be deleted including all items that belong to it. If only system is specified, then the entire
system, including its subsystems and their items, will be deleted. When an item is deleted,
all entries in the main run index and all constants sets associated with that item are deleted.
The script does not attempt to delete the item from copies of the run index.

This script can only be run by the dbmanager on the server of the local host.

This action works outside the history mechanism; the deleted items can only be restored
from backup copies of the CalDB database.

The usage message is:

function: deletes systems, subsystems and items from the CalDB. Must be run
by dbmanager on localhost.

usage:
caldb_delete_items.pl s=<system> [ss=<subsystem>] [i=<item>]

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name

example:
caldb_delete_items.pl s=newGreatSystem ss=badsubs i=item9

The arguments are:

system or s (required) System which contains the items to be deleted. If all subsystems in
the system are deleted (see the subsystem argument), the system itself will be deleted.

subsystem or ss (optional) Subsystem which contains the items to be deleted. If all items
in the subsystem are deleted (see the item argument), the subsystem itself will be
deleted. If omitted, then all subsystems in the specified system will be deleted.

item or i (optional) Item to be deleted. If omitted, then all items in the specified subsystem
will be deleted.

3.2.28 caldb_delete_changes.pl

Deletes recent changes to a run index. The user specifies a system/subsystem /item combi-
nation, an officer whose changes will be examined, and a time in the past, back to which
changes will be deleted. If the item is specified as allitems, then all items in the subsystem
will be searched for links to delete. If the subsystem is specified as allsubsystems, then all
subsystems in the system will be searched (allitems is mandatory in this case).

43

N. b., this script, if misused, can be very dangerous to your run index. It deletes links
that have been added in the past, and thus defeats the built-in history mechanism of the
CalDB. Links which have been deleted by this script cannot be recovered easily. In addition,
by destroying the history record of the run index, users that are using a fixed time to access
the run index may get different results after links are deleted if their fixed time is after the
deletion time specified in the input argument. Recall that users using a fixed time expect
the results to be time-independent.

The script is provided to allow users to delete large, inadvertently-added sets of links,
and if deemed necessary, should be used as soon as the mistake is realized to minimize the
amount of history that gets erased. If a lot of time (on the order of days) has passed since
the mistake, it might be better to use caldb_copy_ranges.pl, described in Section 3.2.18, to
render the latest version of a set of items the same as that at a time in the past, preserving
all of the history.

Because of this danger, only officers can run this script, and then only on run indices
stored in the calib_user database. To delete links from the main run index or any other
run index in the calib database, you must ask a database manager to do it.

The constant sets themselves are not deleted, only the links (references to them) in the
selected run index. To view all existing constant sets, independent of how they may or may
not be linked, use caldb_show_sets_item.pl, described in Section 3.2.7.

The user is prompted twice. Once to approve a recap of the chosen input parameters,
once to approve deletion of the results of the search for recent links.

The usage message is:

purpose: Delete run index entries back to a specified time for
specified items entered by a specified officer.

usage:
caldb_delete_changes.pl s=<system name> \
ss=<subsystem name | ’allsubsystems’> i=<item name | ’allitems’> \

a=<author name> t=<time to go back to> it=<run index table name> \
[hostname=<hostname of db server>] [nodelete=<non-zero>] \
[help=<non-zero>]

note: use nodelete=1 to practice using this script

alternate flag names:
s or system for system name
ss or subsystem for subsystem name
i or item for item name
a or author for author name
t or time for time to go back to
it or runIndexTable for run index table name

example:
caldb_delete_changes.pl s=SC_CALIBRATIONS ss=delta_T i=paddle2paddle \

44

it=calib_user.RunIndexJunk a=vipuli t=2001/10/5 hostname=claspc?2

The arguments are:

system or s (required) System to search for links to delete.

subsystem or ss (required) Subsystem to search for links to delete. Specify allsubsystems
if all subsystems in the specified system are to be searched. In this case you must specify
item=allitems.

item or i (required) Item to search for links to delete. Specify allitems if all items in the
specified subsystem(s) are to be searched.

author or a (required) Only links by this author will be considered for deletion.

time or t (required) Only links made after this time will be considered for deletion. See
Section 3.2 for a description of the time format.

runIndexTable or it (required) The name of the run index table from which links will be
deleted. See Section 3.2 for a description of the specification of run indices.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

nodelete (optional) If this argument is set to a non-zero value, then no links will be deleted.
The script will nonetheless performed the requested search for links and the results
will be reported. Use this argument to preview the result of the deletion operation
requested. In this mode, the user will not be prompted for approval of the (benign)
search.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

The example command in the usage message above gives:

note: use nodelete=1 to practice using this script
info: connecting to host claspc2

info: as user marki

info: deleting entries from system SC_CALIBRATIONS
info: subsystem delta_T

info: item paddle2paddle

info: from run index table calib_user.RunIndexJunk
info: entered by user vipuli

info: going back to 2001/10/5

info: deletion is enabled

Is this what you want to do? (yes/no) yes

info: searching for entries to delete

info: subsystem = delta_T

info: item = paddle2paddle

info: runs 27352-27499, set 163, linked 2001-10-11 19:13:13 by vipuli

45

comment: adjustp2p

info: runs 27352-27499, set 167, linked 2001-10-29 10:01:43 by vipuli
comment: passO p2p adjust

Are you sure you want to delete these entries? (yes/no) yes

info: deleting id=179757

info: deleting id=181871

3.2.29 caldb_drop_table.pl

Drops a table in the calib_user database on a given server. These tables are usually private
run indices. As such they are in danger of getting old, stale and useless. This script allows
the user to clean up old work.

The usage message is:

Purpose:

Drops a table from the calib_user database.

usage:

caldb_drop_table.pl table=<table name> \

[hostname=<hostname of db server>] \
[help=<non-zero for usage message>]

example:

caldb_drop_table.pl table=RunIndexJunk
The arguments are:
table (required) The name of the table to drop.
hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.

The example command in the usage message above gives:

INFO: Dropping table RunIndexJunk from the calib_user database
on clasdb.jlab.org.

Is this 0K? (yes/no): yes

INFO: Table dropped.

See Section 3.2.22 for a script to use to get a listing of tables in a given database.

3.3 Browsing CalDB on the Web

There is a CGI script that generates web pages for browsing the contents of the CalDB. It
uses the Perl API exclusively for all database interactions. The source is in(®

() At JLab, CLAS_TOOLS is /group/clas/tools. To get tools from CVS, the command is cvs checkout
tools.

46

$CLAS_TOOLS/caldb/cq.pl .

The URL is

http://clasweb. jlab.org/cgi-bin/caldb/cq.pl .

3.4 Graphical Interface for Viewing Constants

There is a graphical interface for viewing calibration constants. It is based on the Java
CalDB class library (documentation to come). You can view a particular constant from a
constant set as a function of run number or view all constants in a constant set as a function
of channel number. To get instructions on its use, see

http://www.jlab.org/~avakian/caldbJ .

4 Backward Compatibility with the Map

At this writing there is a large amount of CLAS analysis code that uses the Mapmanager to
read and write calibration constants. There are two methods by which this legacy code can
operate with the CalDB:

1. Link to Map-emulating routines that access the CalDB directly. See Section 4.1.

2. Write Map files from the CalDB and use the original Map libraries. See Section 4.2

4.1 Map-Emulation Library

A set of access routines have been written that mimic the calling arguments of the Mapman-
ager C subroutines. They access the database directly, performing the same functions on the
database as the Map routines performed on the Map files. The files are in the CLAS CVS
repository under packages/caldb/Map. Programs which formerly linked to 1ibmapmanger.a
can link to the combination of libcaldbMap.a, libclasutil.a, libmysqlclient.a,®.
libtcl.so and libdl.so. On some Linux systems, you must also link to the system-
supplied 1libz.a. By linking in these libraries, old Map-based code can be used without
modification. The routines in utilities/maputil that are relevant for CalDB have been linked
and tested with the new library. The converted routines are:

e get_first
e get_map_char
e get_map_float

e get map_int

() At JLab, you can the MySQL libraries in directories under /apps/mysql. For more information on using
MySQL see the Offline FAQ. The URL is http://clasweb.jlab.org/offline/offline faq/.

47

e get_map_item

e put_map_char

e put_map_float

e put_map_int

What follows is a snippet of the makefile for these maputil routines:

ifndef MAP
LIBNAMES = caldbMap$ (ADD_DEBUG) clasutil$(ADD_DEBUG) mysqlclient
ifeq "$(0OS_NAME)" "LinuxRH6"
LIBNAMES += z
else
ifeq "$(0S_NAME)" "SunQS"
SHARED_LIBS += -lsocket -1nsl

endif
endif
SHARED_LIBS += -1tcl -1d1
else
LIBNAMES = mapmanager$ (ADD_DEBUG)
endif

There are several environment variables that will allow the Map-emulation routines
to access non-default versions of the calibration constants. They are CLAS_CALDB_HOST,
CLAS_CALDB_RUNINDEX and CLAS_CALDB_TIME. They are described in detail in Section 5.2.2.

4.2 Translating Between the Map and the CalDB

There are scripts in the $CLAS_TOOLS/caldb area to translate from a set of Map files to the
MySQL database and from MySQL back to the map.

4.2.1 Map to CalDB

$CLAS_TOOLS/caldb/map2db.pl is a Perl script that will translate a set of Map files into
the MySQL database. It operates on all files with the .map extension in $CLAS_PARMS/Maps.
It assumes that the server does not have a pre-existing verion of the CalDB installed. All
database tables are placed in the “calib” database. This script was used to create the original
version of the CalDB, and in principle, should not have to be run ever again.

$CLAS_TOOLS/caldb/mapfile2db.pl is intended for general use. It copies constants from
a single Map file into the CalDB. Single items can be copied, or all items in a subsystem, or
all items in all subsystems. In addition a run range can be specified; only Map runs within
the range will have their constants copied.

A note on the constants selected for copying and their run assignments in the CalDB.
The user must specify explicitly whether all of the runs are to be copied (allruns=1) or
whether a run range should be copied (set runMin and runMax). If a run range is specified,

48

Map Run Effective Map Range CalDB Range

1000 1000-1999 not copied
2000 2000-2999 2500-2999
3000 3000-3999 3000-3999
4000 4000-4999 4000-4500
5000 5000-00 not copied

Table 3: Example of run range assignments when copying from the Map to the CalDB using
mapfile2db.pl. Here, the user-specified run range is 2500-4500.

then all Map constants that are relevant for runs runMin through runMax inclusive will be
copied. In the CalDB, the run range assignments will match exactly those found in the
original Map, with the possible exception of the first and last set of constants. It may be
the case that the user-specified runMin is larger than the lower bound of the lowest Map
run range. In that case the assignment in the CalDB will truncate the run range, using
the user-specified minimum rather than the Map-resident minimum. Likewise if the upper
bound of the highest Map run range is greater than the user-specified runMax, the assigned
CalDB range will use the user-specified value. Table 3 shows an example.
The usage message is

Purpose: copy constants from a single Map file into the CalDB.
Note: use nowrite=1 to practice using the script.

Usage:

mapfile2db.pl mapfile|m=<name of map file> \
subsystem|ss=<subsystem name|allsubsystems> \
item|i=<item name|allitems> \
[allruns=<non-zero>}] [runMin|min=<minimum run number>] \
[runMax |max=<maximum run number>] \
[runIndex|ri=<name of target run index>] \
[hostname=<hostname of MySQL server>] [nowrite=<non-zero>] \
[help-<non-zero>]

Example:

mapfile2db.pl mapfile=/group/clas/parms/Maps/DC_DOCA.map \
subsystem=t_max item=Sector6 runIndex=calib_user.RunIndexJunk \
min=2063 max=8099

The arguments are:
mapfile or m (required) The name of the Map file that should be inserted into the CalDB.
subsystem or ss (required) The subsystem to be copied. If this argument is set to

allsubsystems then all subsystems will be copied.

49

item or i (required) The item to be copied. If this argument is set to allitems then all
items in a subsystem will be copied.

allruns (optional) If this argument is set to a non-zero value, then all runs in the Map file
will be copied. See note above.

runMin or min (optional) Minimum Map run to copy. See note above.

runMax or max (optional) Maximum Map run to copy. See note above.

runIndex or ri (optional) Destination run index for the constants. See Section 3.2.
hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.

nowrite (optional) If set to a non-zero value, no constants will be written to the CalDB.
Use this argument to preview the results of a given set of arguments.

help (optional) A non-zero value prints the usage message. See Section 3.2 above.

4.2.2 CalDB to Map

$CLAS_TOOLS/caldb/db2map.pl translates from the MySQL database to a set of Map files.
The files are created in a local directory named with the specified minimum and maximum
runs (e. g., if runMin=1200 and runMax=2700 the name of the directory is Maps_1200-2700).
These files can in turn be used with old binaries that read the Map. The new Map files will
reflect the most recent constants stored in the CalDB. The user can request that only one
system be translated, resulting in a single Map file. The default behavior is to translate all
systems. Note that if any Map file already exists in the output directory, no action will be
taken for the corresponding system (no new map file, no change in old one).

If all runs from the CalDB are to be put into the Map file, then use runMin=1 and
runMax=1000000. For other choices, the run range specification is best explained by example.
If in the CalDB, the effective run ranges for a particular item are

CalDB Effective Ranges

minimum maximum
1 999

1000 1999

2000 2999

3000 3999

4000 4999

and the run range specified to the script is runMin=1500 and runMax=3500, then the resulting
Map file will have entries for runs

Map Runs
1000
2000
3000

20

In words, for each CalDB effective run range which overlaps the input run range, one Map
entry will be made. These Map entries will be made for the minimum run of the correspond-
ing CalDB effective run range. Note that this has the obviously desireable effect that, for
all runs in the user specified range, the constants read from the produced Map will be the
same as those from the CalDB.

The script uses native Map binaries (e. g. put_map float) to create new map files and
populate them. It expects to find them in $CLAS_BIN. The user has to make sure that
$CLAS_BIN points to an appropriate directory and not one that has binaries linked with the
Map-emulation libraries. In releases before and including release-2-5, the relevant binaries
use the native Map routines and are therefore appropriate when running this script. The
script will check for a good value for $CLAS_BIN and will exit before starting if it does not
find one.

The usage message is:

Purpose:
Creates Map files from the CalDB. If system is specified only one
Map is made. If not, Map files are made for all systems.

Warning:
Make sure CLAS_BIN points to a directory with '"real" Map utilities
(not Map utilities linked with CalDB’s Map emulation). These are
there up to and including release-2-5.

usage:
db2map.pl runMin=<minimum run> runMax=<maximum run> \
[system=<system name>] \
[skip_run_control=<non-zero to skip RUN_CONTROL system>] \
[runIndexTable=<run index table name>] \
[hostname=<db server hostname>] [help=<non-zero for usage message]

Example:
db2map.pl system=SC_CALIBRATIONS runMin=1 runMax=1000000

The arguments are:
runMin (required) The minimum run of the run range specification. (See above for details.)
runMax (required) The maximum run of the run range specification. (See above for details.)

system (optional) System specification. If this argument is present, only one Map file will be
produced, corresponding to the specified system. By default all systems are translated
into Map files.

skip_run_control (optional) If this argument is non-zero, then when looping over all sys-
tems, the RUN_CONTROL system will be skipped. This option is provided since this
system takes a long time to translate.

o1

runIndexTable or it (optional) The name of the run index table to use. The default value
is calib.RunIndex. See Section 3.2 above.

hostname (optional) The hostname of the MySQL server to use. See Section 3.2 above.
help (optional) A non-zero value prints the usage message. See Section 3.2 above.
The example command in the usage message above gives:

SC_CALIBRATIONS
atten_length
left
length=288, type=float
right
length=288, type=float
atten_u
left
length=288, type=float
right
length=288, type=float

Yoffset
value
length=288, type=float

5 Alternate Versions of Constants

There are some situations where independent versions of the calibration constants are desir-
able.

1. Private code development. Changes to test results can be limited to changes
induced by the code. The calibration constants will be stable.

2. Freeze constants for large production runs. This allows us to reproduce results
at a later time.

3. Private calibration constants development. Changes to test results can be lim-
ited to only those induced by the constants under study. All of the other calibration
constants can be kept stable. In addition, changes made to the constants during testing
will not affect other users.

In the first case, it is sufficient to choose a particular date and use that as the “as of”
date in all calls to the API. Then the constants retrieved will not be sensitive to the latest
contributions of detector calibrators.

52

5.1 Creating an Alternate Version

In all three cases listed above, the user can make a private copy of the run index table. The
script

$CLAS_TOOLS/caldb/caldb_make run_index.pl
will do this. See Section 3.2.17 for details of its use.

5.2 Using Alternate Versions

There are several ways to specify alternate versions of constants. The exact method depends
on the type of program being run.

5.2.1 Argument to Command-Line Scripts

All of the command-line scripts described in Section 3.2 have an optional argument called
runIndexTable (whenever appropriate). Using this argument, the user can use the run index
table of choice, for both read and write operations.

5.2.2 Environment Variables for Map-emulation Routines

If the Map-emulation routines are used to read and write constants, then there are shell
environment variables that enable use of an alternate versions of constants for all operations.
In particular, these environment variables can be used to direct analysis programs to use a
specific version of the constants other than the latest one contained in the main run index
on the default server.

CLAS_CALDB_HOST If this variable is set, it will be used as the MySQL server. This will be
useful for those using a mirror site (see Section 7.2). For example,

setenv CLAS_CALDB_HOST einstein.sr.unh.edu
If this variable is not set, the server will default to clasdb. jlab.org.

CLAS_CALDB_RUNINDEX If this variable is set, its value will be used as the run index table for
all queries. For example,

setenv CLAS_CALDB_RUNINDEX calib_user.RunIndexMine

will access the RunIndexMine table of the calib_user database. If this variable is not
set, the run index defaults to the main one, RunIndex of the calib database.

CLAS_CALDB_TIME If this variable is set, then all read operations will get the version of con-
stants as of the specified time. The format is the same as that described in Section 3.2.
For example,

setenv CLAS_CALDB_TIME 2001/6/12

will give the constants as they existed at midnight, June 12, 2001. If this variable is
not set, then the latest set of constants will be retrieved.

23

5.2.3 Tecl Variables in RECSIS

RECSIS users can change the name of the run index table by a line in their recsis tcl
initialization script. If the name of your index is RunIndexMine in the calib_user database,
the syntax is:

set RunIndex_table calib_user.RunIndexMine

That will override any definition you have in the environment for CLAS_CALDB_RUNINDEX.
Note that one uses the set command of vanilla Tcl, not the setc command of RECSIS Tcl.
The other environment variables have not yet been implemented as T'cl variables.

6 Access Control

There are several different levels of access to the database:
1. Database Manager (1 or 2 people)
2. Officers (1 or 2 per calibration system)
3. Users
Further, there are several features which are built into the access system:
e Users can

— insert constants to the database
— create private run index tables
— modify (i. e., insert, update, delete) private run index tables

— read anything in the database
e Users cannot,

— delete constants from the public item value tables

— drop or modify the public run index table

Officers can, in addition

— delete constants from the public item value tables

— modify the public run index table

Officers cannot

— drop item value tables from the database

— drop the public run index

Database Managers can do anything to the database

54

user table
Host ‘ User ‘ Password ‘ Privileges
clasdb.jlab.org | dbmanager | non-NULL | all
%.jlab.org officer_1 NULL none
%.jlab.org officer_2 NULL none
NULL clasuser NULL none

Table 4: MySQL user table. dbmanager must connect from clasdb. jlab.org. Officers must
connect from a client in the jlab.org domain. clasuser must connect from a host named
in the host table (see Table 5). The dbmanager must be password authenticated. Officers
and clasuser do not need passwords. The dbmanager can do anything on the database
server.

host table
Host ‘ Db ‘ Privileges
%.jlab.org calib% | Select
einstein.sr.unh.edu | calib% | Select

Table 5: MySQL host table. This is the list of hosts that we trust. clasuser can only
connect from one of these hosts.

The MySQL access tables shown in Tables 4-7 accomplish these goals.

The restrictions described above only apply to tables in the calib database. In order to
provide complete freedom for users to develop new calibrations schemes, another database
calib_user is provided. All users are allowed to write to the calib_user database. Tables
can be added and dropped, and rows in run index tables can be inserted, updated, and
deleted.

db table
Host ‘ Db ‘ User ‘ Privileges
NULL | calib | officer_1 | select, insert, create
NULL | calib | officer_2 | select, insert, create

Table 6: MySQL db table. Officers can read and insert new rows to any table in the calib
database. They can create new tables. They cannot delete rows or drop tables.

95

tables_priv table
Host, ‘ Db ‘ User ‘ Table_name ‘ Table_priv

NULL | calib | clasuser | item value table 1 | select, insert
NULL | calib | clasuser | item value table 2 | select, insert

Table 7: MySQL tables_priv table. clasuser can insert rows into any item value table.

7 Database Deployment

7.1 Authoritative Version

There will be one authoritative version of the database. All write operations must be per-
formed on this JLab-resident copy. The access control scheme encourages this.

7.2 Replication: Maintaining a Mirror Site

Remote sites will want to replicate the database, to avoid having to read constants over the
network from JLab (see Section 5.2.2). Quoting from the MySQL document|2]:

Starting in Version 3.23.15, MySQL supports one-way replication internally.
One server acts as the master, while the other acts as the slave. Note that one
server could play the roles of master in one pair and slave in the other. The
master server keeps a binary log of updates and an index file to binary logs to
keep track of log rotation. The slave, upon connecting, informs the master where
it left off since the last successfully propagated update, catches up on the updates,
and then blocks and waits for the master to notify it of the new updates.

Note that if you are replicating a database, all updates to this database should
be done through the master!

To get replication going:

1. Look over the section “Replication in MySQL” of the “MySQL Database Administra-
tion” chapter of the MySQL manual to get a feeling for the concepts.

2. Make sure the MySQL server you are running is at version 3.23.29 or higher so that
you avoid conflicts with older versions of the replication code.

3. Get a unique server ID number and the replication password from the CalDB manager
(Mark Ito). You can view the currently assigned ID’s at

clasweb. jlab.org/offline/server_id_hallb.html.

4. Put the following lines in your my.cnf file) under the [mysqld] section:

() Not all installations of MySQL will have a my.cnf file. If none exists, you will have to create one. For
more information, see the section “my.cnf Option Files” of the chapter “MySQL Database Administration”
of the MySQL manual.

26

server-id=<your-server-id>
master-host=clasdb. jlab.org
master-user=repl
master-password=<the-password>
master-port=3306

. Install the snapshot(® of the CLAS database server in your MySQL data directory.
The current correct snapshot is

/group/clas/mysql_data/mysql_snapshot.tar.gz

on the JLab CUE. Note that this is actually a symbolic link to the correct snapshot.
Copying, gunzip’ing and un-tar’ing this file makes a copy of the CLAS databases in the
current working directory, therefore this should be done in your servers MySQL data
directory. For example, if your data directory is /var/1ib/mysql, and you copied the
snapshot to say

/scratch/mysql_snapshot.tar.gz,
then as root you type:

cd /var/lib/mysql
tar zxvf /scratch/mysql_snapshot.tar.gz

Now the local server has a complete (though out-of-date) copy of all of the CLAS
databases (starting replication will bring them up-to-date).

. Stop and restart the MySQL server. On most Linux systems this can be done as root
if you type:

/etc/rc.d/init.d/mysqld stop
/etc/rc.d/init.d/mysqld start

This forces a re-read of the my.cnf file. Until this is done, the local server will not act
like a slave.

Replication should start on your local server. You should check this in your MySQL error
log. For vanilla rpm installation the log file is /var/1ib/mysql/your_host_name.err. You
should see a message like

020403 15:43:36 Slave: connected to master ’repl@clasdb.jlab.org:3306°,
replication started in log ’FIRST’ at position 4

(8)What is a snapshot exactly? MySQL keeps the totality of data for a given database in a single directory.
For example, if the data directory is /var/1ib/mysql and the database in question is test, then all tables
and indices are stored in files in the directory /var/1ib/mysql/test. For our purposes, a snapshot is a
tarball of one of these database-holding directories.

o7

Another good way to check is to give the command
show slave status;

to the mysql program. In particular, “Slave_Running” should be marked “Yes”.

There is one important thing to note about this mechanism. The replication of the
databases is meant as a one-way street. All changes to constants should be made on the
central server, clasdb. jlab.org, the “master”. The replication mechanism will then dis-
tribute them to the mirror sites, the “slaves.” There is no completely straightforward way to
propagate changes made on slaves back to the main server. Even if there were, the possible
confusion due to parallel changes would make it a bad idea. In fact, if you make changes to
your replicated databases, replication may hang due to duplicate values of “primary keys”
when independent changes are made to the same table on the master and on the slave. In
other words, treat a replicated database as read-only.

It is not absolutely necessary to use replication to get a local version of the database.
You can simply upload one of the backups (see Section 7.3). Replication has the advantage
of continuously and automatically updating your local version.

7.3 Backups of the CalDB

Every night a backup of the calib database on clasdb. jlab.org is done. The technique

used is to run mysqldump on the entire calib database. This saves all of the contents of

all of the tables in calib in an ascii text file that has the form of MySQL commands. If a

user inputs this file to the mysql command line tool on standard input, the entire contents

of calib will be reconstituted on the chosen server. See the MySQL manual for details.
These backups can be used for a variety of purposes:

e In case of a disk failure we can reconstitute the database from one of these backups.
The JLab Computer Center is also doing a nightly backup of the group disks, so our
backup is redundant. On the other hand having direct access to the backups may be
convenient.

e As an alternative to replication (see Section 7.2) MySQL servers other than
clasdb. jlab.org can use these backups to install local versions of the calib database,
either as a one-time test, an occasional refresh, or as part of a periodic update proce-
dure.

e The backups provide a crude time history. Detailed time histories are built into the
database, but in the case of major user/officer/manager/software error, it may be
convenient to have a set of copies, marked by date, to study the problem and possibly
fall back on.

The backup runs at midnight every night. The files are stored on the CLAS work disk
in /work/clas/disk3/claslib/calib_backup. The files have names like
calib_dump_2001.08_22.sql.gz (in this example the dump was done on August 22, 2001).
There is a symbolic link, calib_dump.sql.gz, that points to the latest version.

28

Once a week we write the latest backup to the silo. The silo directory is
/mss/clas/caldb. You can retrieve any backup from tape via the JLab Computer Center’s
jget command.

8 Online Constants: Updating the RUN_CONTROL System

The RUN_CONTROL system(™ contains quantities that are generated during data-taking, such
as beam energy, magnet currents and critical scaler values. Among other places, the online
system stores all of them and more in an INGRES database. There is a cron job that runs
every six hours that checks for new entries in the online INGRES database and transfers them
to the CalDB.(®) The script is $CLAS_TOOLS/caldb/online_update.pl and is run as user
clascron on clonl0. jlab.org.

Appendix A CALDB C-API functions

A set of C subroutines (C-API) have been written to perform read and write functions on
the database. The C-API files are in the CLAS CVS repository under packages/caldb/C.

ConnectToServer ()

function prototype:
MYSQL *ConnectToServer(char *host,char *dbname,char *user,char *user_password)

Description

Attempts to establish a connection to a MySQL database engine running on host(by
default clasdb) and access the database dbname (by default calib) . The password pa-
rameter contains the password for the user .

return value

MySQL handler (if no error), needed by all other functions to access the dbase.

NULL in case of error.

example mysql=ConnectToServer(host,dbasename,user,password);

DisconnectFromServer ()

function prototype: void DisconnectFromServer(MYSQL *conn)
Description
Closes a previously opened connection.

(M Qur entire approach to handling these online constants should be reviewed. The CalDB, as currently
configured is designed to deal with constants that apply to a range of runs. If there is a one-to-one corre-
spondence between run number and constant, a different structure is appropriate. We also need to deal with
the question of authority: which is right, online or offline database?

() Although in principle, the online programs could update the CalDB in real-time, that method requires
an extra-counting-room network connection that would have the potential to interfere with data-taking.

99

WriteConstantSet ()

function prototype:
int WriteConstantSet(MYSQL *conn, char *systemname, char *subsystemname, char *item-
name, int minrunsource, int maxrunsource, char *calib_comment, char *value, itemvalue
*itemvalueid)

Description Writes a set of calibration constants in the calib database.

input:
1. systemName, subsystemName, itemName to fill a valuelD table
systemName_subsystemName_itemName (EC_GAIN outer_u).
2. value array of N constants for corresponding item (calibration constants
“v_0001...v_ONNN")
3. author
4. time
5. the range of runs used in extraction (minRunSource,maxRunSource)
6. comment (calib_comment) including some details on the procedure (version of software
7. mysql connection handler.

return values

itemValueld a variable containing the number of entry in
systemName_subsystemName_itemName table.

istat a status of the transaction (0 if OK)

example:

istat=WriteConstantSet(mysql, systemName, subsystemName, itemName, minRun,
maxRun, calib_comment, value, &itemvaluid)

LinkConstantSet ()

function prototype:
int LinkConstantSet(MYSQL *conn, char *systemname, char *subsystemname, char *item-
name, char *RunIndexTable, int minrun, int maxrun, char *runindex_comment, itemvalue
itemvalueid, commentstruc runcomm, itemvalue *runindexid)

Description Link a set of calibration constants fro value table to RunIndex table. input:

1.systemname,subsystemname,itemname (to get the tablename=EC_GAIN _outer_u and
the itemId=283 (see item table))

2.RunIndexTable Name="RunIndex” (also a working copy of RunIndex table could be
used)

3.minrun, maxrun minimum and maximum run# validity range for this set of constants
(could be different from minrunsource,maxrunsource)

4.runindex_comment,author comment and author filled in a runcomm structure(see later)
(could be different from valuld table values)

5.itemvalueid the number of entry in the valueld table (EC_GAIN outer_u).

6.mysql connection handler

return values

60

runindexid ID# in Runlndex for this entry. structure commentstruc int minRun-
Source; int maxRunSource; char *author; char *time; char *comment; (defined in the
calib_connect.h) gives details on constants for record=itemvalueid of
systemName_subsystemName_itemName table.

istat a status of the transaction (0 if OK)

example:
istat=LinkConstantSet (mysql, systemName, subsystemName, itemName, RunIndexTable,
minRun, maxRun, calib_comment, itemvalueid, runcomm, &runindexid)

ReadConstants ()

function prototype:
int ReadConstants(MYSQL *conn, char *systemname, char *subsystemname, char *item-
name, char *RunIndexTable, int runno, char *date, itemvalue *itemvaluid, commentstruc
*runcomm, valuestruc *tlvalue)

Description Reads a set of calibration constants from a valueld table
input:

1. systemname, subsystemname, itemname (to get the tablename=EC_GAIN_outer_u
and the itemId=283 (see item table))
2.RunlndexTable Name="Runlndex” (also a working copy of RunIndex table could be used)
3.runno run##
4.date (consider inputs before validity date and take the latest set)
return values
itemvalueid - the number of entry in the valueld table
structure commentstruc int minRunSource; int maxRunSource; char *author; char *time;
char *comment;

structure valuestruc int length; char *type; char **item; (defined in the calib_connect.h)
gives length, type and value string with constants (”v_0001...v_ONNN")

istat a status of the transaction (0 if OK)

example:

istat=ReadConstants(mysql, systemName, subsystemName, itemName, RunIndexTable,
runno, date, &itemvaluid, &runcomm, &tlvalue);

WriteandLinkConstantSet ()

function prototype:
int WriteAndLinkConstantSet(MYSQL *conn, char *systemname, char *subsystemname,
char *itemname, int minrunsource, int maxrunsource, char *calib_comment, char *value,
itemvalue *itemvalueid, char *RunIndexTable, int minrun, int maxrun,
char *runindex_comment, itemvalue *runindexid)

Description Write and link a set of calibration constants in the calib database. All
input and output variables are the same as for WriteConstantSet() and LinkConstantSet()
functions.

61

caldb_getItemId()

function prototype:
int caldb_getItemId(MYSQL *conn, char *systemname,char *subsystemname,char *item-
name,int *length,char **type, char **itemid)

Description

Return the item number, variable type and length.

caldb getItemValueId()

function prototype:
int caldb_getItemValueld(MYSQL *conn, char *tablename, itemvalue *itemvalueid ,com-
mentstruc *runcomm)

Description

Return the id of entry from value table.

References
[1] L. Dennis, A. Freyberger, G. Gavalian, M. Holtrop, M. Ito, G. Riccardi, R. Suleiman

and D. Weygand, CLAS Calibration Database Specification, CLAS-NOTE 2000-008,
http://clasweb.jlab.org/caldb/cal_db_spec/.

[2] http://www.mysqgl.com

[3] http://www.jlab.org/ manak/packages/Map/mapmanager.html

$Id: caldb.tex,v 2.112 2003/05/28 20:39:43 marki Exp $

62

