
CLAS-NOTE 2001-021

Jsub XML

Josh Hone
June 14, 2002

Introduction:

I have written and modified some Java classes for the purpose of generating Jsub request
scripts from information encoded inside a JsubXML form. Jsub is the Jefferson Lab
scripting language that submits a programmer’s programs to the processor farm for fast
processing of their “jobs”. A typical JsubXML form might contain data looking like this:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE JOBREQUEST SYSTEM “http://www.jlab.org/~hone/XML/Jsub.dtd”>
<JOBREQUEST>
 <COMMAND>run_a1c</COMMAND>
 <PROJECT>clas</PROJECT>
 <QUEUE NAME=”low_priority”/>
 <JOB>
 <JOBNAME>run1.f</JOBNAME>
 <QUEUE NAME=”production”/>
 </JOB>
 <JOB>
 <JOBNAME>mark_test</JOBNAME>
 </JOB>
</JOBREQUEST>

Once this markup and its information are passed to the Java program, it generates zero to
many Jsub scripts (in direct correlation to the number of <JOB> tags) by parsing the
markup with a Java-based Apache XERCES parser, using the SAX parsing functions.
Documentation for the parser can be found at http://xml.apache.org/xerces-j/index.html
and linking to either the API docs or the others listed in the left-hand column as you have
need.

XML

The Jsub eXtensible Markup Language (XML) is a markup structure designed to hold all
information that the Jsub submission system could possibly use in running a script.

What is XML?

XML is a natural choice to encode this information because the language allows a
programmer to create a markup language to match almost any situation-specific lingo. It
employs descriptive tag names, describes relationships among tags, and can ensure that
the data in a document is used in more or less the fashion for which it was intended.

A Document Type Definition (DTD) uses XML syntax to define tag names, attributes,
interrelationships, and other properties. They are referred to in a declaration at the
beginning of every XML document. An XML document that matches with the rules
provided by the DTD is said to be valid, and, if it is written in good markup style, well-
formed. The parsing program checks for both. For example, a DTD can declare that the
legal value a tag may contain is PCDATA, which stands for parsed character data. Then
it may declare that a tag’s attribute may contain CDATA, which is just PCDATA for
attributes, indicating that in attributes the character data is not parsed, or removed of
leading and trailing whitespace. However, it should not allow bad markup grammar,
such as ending an outer element before an inner element is ended.

What is Jsub XML?

The Jsub DTD can be found, thoroughly commented, by a link at
http://www.jlab.org/~hone/ , and in the CLAS CVS repository under tools/JsubParser.
This DTD defines the structure and the main intent of JsubXML. All Jsub keywords
have been encoded in Jsub XML and can be specified by using this markup language. A
list of Jsub keywords and their respective functions can be found at:
http://cc.jlab.org/docs/scicomp/how-to/keywords.html. So, to use this XML structure, we
will write a web interface with easy-to-use forms that a potential farm user will fill out.

Jsub XML-Jsub Command Keywords

There is more or less a direct connection between the names of the Jsub XML tags and
the names and/or functions of the corresponding Jsub keywords. First, a
<JOBREQUEST> is the root tag for this type of document. It contains all (ANY) other
tags. The Tag Name column lists the set of existing JsubXML tag names. The Jsub
Keyword column lists the corresponding keyword in the JSUB scripting language, if any.
The Tag Value-Keyword Value column maps the possible values of the tag, as allowed
by the tag definitions in the DTD, to the type of information that it becomes in the
resulting JSUB script. The Description field is a set of comments on the meaning of the
tag. Here is a list to match the rest together:

Tag Name Jsub Keyword Tag Value -
Keyword Value

Description

COMMAND COMMAND PCDATA-character
data

Points to the user
script.

COMMAND –
COPY att.

COMMAND_COPY TRUE/FALSE –
present/not present

Copy the command
file to the local

farm disk.

PROJECT None EXTENSION Holds PROJECT
info.

PROJECT –
NAME att.

PROJECT CDATA-character
data

Project name
allotted the farm
time.

EXTENSION None EXTENSION Utility tag for
specifying
subprojects.

EXTENSION –
NAME att.

None PCDATA-none Subproject name.

USER None PCDATA-none Utility to specify
the user name.

JOBNAME JOBNAME PCDATA-character
data

Gives jobs a label
inside Jsub.

QUEUE None Empty Contains queue
name information.

QUEUE – NAME
att.

QUEUE IDLE,
LOW_PRIOIRITY,
PRIORITY,
PRODUCTION

Specifies the job
queue on the farm.

TIME TIME PCDATA- integer
value

Maximum time the
job can run on the
farm.

TIME –
UNITS att.

Converts TIME value. SECONDS,
MINUTES, HOURS,
DAYS

Unit of time the
value is specified
in.

OS None Empty Contains OS
specification

OS –
NAME att.

OS ANY, AIX,
SOLARIS, LINUX,
HPUX

Tells which OS
your farm job uses.

MAIL MAIL PCDATA-character
data

Email addresses to
which Jsub can
mail job status
reports.

OPTIONS OPTIONS PCDATA-character
data

Gives the
command line
options to the user
script.

INPUT INPUT_FILES PCDATA-character
data

Names of job input
files stored on the
tape drive.

INPUT –
LOCAL att.

INPUT_DATA CDATA-character
data

Name every input
file should be
called locally on
each farm node.

REPETITIONS MULTI_JOBS PCDATA- integer
value

Number of times a
job should run if
zero or one
INPUT_FILE is
given.

OTHER_FILES OTHER_FILES PCDATA-character
data

Other job input
files not coming
from the tape silo.

OTHER_FILES-
LOCAL att.

None CDATA-none Possible future
inclusion to specify
what each other
file should be
called on the local
farm node.

OUTPUT OUTPUT_TEMPLATE PCDATA-character
data

Name of the output
file copied back to
the silo.

OUTPUT –
LOCAL att.

OUTPUT_DATA CDATA-character
data

Name of the output
file on the local
farm node.

OUTPUT – DEST
att.

TOWORK, TOTAPE WORK, TAPE –
TOWORK, TOTAPE

Destination of
output files – the
working disk or the
tape silo.

JOB None ANY Each separate JOB
becomes a Jsub
script. Local
qualities can be
described apart
from global ones
here.

JOB –
SINGLE_JOB att

SINGLE_JOB FALSE, TRUE – not
present, present

If present, process
all INPUT_FILES
with one job.

Java

Why Java?

Perl might seem like a more natural choice to accomplish this task, since it is very good
at outputting and formatting text and in connecting to some databases. Java was chosen
for a number of reasons. One is that most people use Java to do XML parsing, and it is
easy to find examples and usable source code for Java XML parsers on the web and in
programming books. Second, it seemed like a more natural tool for writing a web tool
that can be well-supported in the future. Third, Java is platform-independent, since you
use a Java compiler from Sun to compile the code. A program compiled on any machine
can run on any other machine as long as they use compatible Java Runtime Environments
(JREs). Fourth, we can use Java DataBase Connectivity (JDBC) classes to connect, with
the same source code in the calls, to any database. This partially arises from the platform
independence of Java. The intent is to connect to any of JLab’s many databases with this
program to build more useful Jsub scripts from the same web interface request.

What happens?

A command line user of this program will simply say:

java JsubParser.JsubParser [name of XML file to be parsed]

The program will generate Jsub scripts, ready for submission, in the local directory. The
syntax of this can be explained piece by piece:

java: This is the command to execute a Java program.

JsubParser.JsubParser: This syntax says that you want to execute the main function of a
class called JsubParser(the second name) in package JsubParser(the first name). To
execute this program, strict file name and directory name guidelines must be maintained.
See “Setting CLASSPATH” for rules and regulations of this process.

Setting CLASSPATH

Usage of the Java classes from the command line begins with setting an environment
variable called CLASSPATH. On a typical Unix system you would add a line to your
.cshrc file (C shell resource, I think…)

setenv CLASSPATH /pathname/jarname.jar:/pathname/JavaPackageContainer

Then you run the command:

source .cshrc

This ensures that the changes are implemented by your environment.

What does all this mean? The environment variable CLASSPATH, which can also be set
on the java command line using the flag –classpath, tells the runtime environment where
to find the various classes that are referenced in the source code. It is also used in

compilation with the javac command to find all classes that the main method in the
compiled source file uses.

A peculiarity in Java is that the source file which contains a class must be named only a
certain way: classname.java (whatever the class name is). This extends to directories and
packages as well. A package, which is a collection of classes, must be contained in a
directory of the same name as the package. For example, the JsubParser package
contains all classes that make up the package JsubParser: JsubContentHandler,
JsubErrorHandler, JsubParser, and JsubScript. They must be in a directory called
JsubParser. When CLASSPATH is set, it must point to the directories containing the
classes and packages that a program needs. Then, when the program compiles the class
with the main method that the programmer wants to invoke, it will automatically compile
all classes that this program needs. It can find those classes by the paths provided by the
CLASSPATH.

It is easy to point to too little, but it is also easy to point to too much. The java compiler
will compile only the classes that are referenced by the main routine, directly or
indirectly. From those it will compile all found from the CLASSPATH paths. Then, in
the runtime environment, the program will encounter whatever problems are incurred
from not including code definitions of compiled classes. However, if a CLASSPATH
points to two files with the same name, then the compiler will not know which the
program is meant to include. Neither of the conflicting files will be compiled, and your
program may suffer while running from the absence of the machine code from those
files.

What is in the Java code?

The base source code comes from an Apache XERCES parser that can parse in either a
SAX (Simple API for XML) or DOM (Document-Object Model) fashion. The formula
to make either work is to override underlying parsing functions with your own code that
handles events as they happen. However, a SAX parses XML“nodes”: it will simply
load, node by node, the document in sequence. A programmer rewrites the functions that
deal with each node. Examples of nodes include elements, character data, and processing
instructions. A DOM loads the entire document into memory and the functions move
around the document tree. A SAX Parser is used in this code.

Starting with the sample Apache program, SAX functions were written to parse the
beginning and end of elements, the handling of any element’s attributes, and the
character data inside an element. Global variables were added to the JsubContentHandler
class, where the functions were written, to add DOM functionality. These carried names
of current elements and some information about the tree structure further up from the
node currently being parsed. This way the simple SAX sequenced processing of nodes
was also given some history about the current node.

A container class was developed to parse each element and attribute encountered. Each
JsubScript is built as the SAX moves along. The program first builds a global

JsubScript, which contains the properties of the request that will be shared by all Jsub
scripts. The global is then copied to a local JsubScript, created by each new instance of a
<JOB> tag, and the program appends the properties specific to that request to the local
JsubScript. This class has member functions that parse each element and attribute in
JsubXML into meaningful Jsub script keywords. Therefore, to change what an element
means, change the corresponding member function. This class offers a localized way to
interpret JsubXML tags.

The other two classes are important but less complicated. The class containing the main
function, JsubParser, simply reads in a URI which locates the document to parse, creates
instances of XMLReaders, ContentHandlers, and ErrorHandlers, and applies them
appropriately to the document at the URI. The ErrorHandler describes how to deal with
mistakes in an XML document’s structure, and it defines three levels of error: warning,
error, and fatal error. The parser cannot recover from a fatal error and must stop parsing.
So, if your document looks really bad, it will stop at your first bad error. Otherwise, it
will output your errors and warnings to the standard output device, wherever you choose
to direct it.

The Future

Xerces, the Java XML parser, is just one piece of software in the Apache Jakarta project,
as noted above. The general development goal of Jakarta is to write Java packages that
work very well with XML and can run inside Apache web servers. Cocoon, Jetspeed,
Ant, Velocity, Turbine, and Tomcat are all programs that aid in creating spaces on web
servers for applets and servlets to run and to parse and interpret XML along the way.
The JsubXML project will be extended using these. The goal of this work is to create
web pages that detail what is happening of interest to a particular user inside a processor
farm. The web server will receive XML from the farm as jobs run that can be sent in the
form of web pages to qualified users who are allowed to see the data. The web pages
will be personalized, much like My Yahoo and other popular web sites, by allowing a
user to specify what type of information they are interested in. Out of a channel, or
stream of data, the information relevant to a registered user will be selected and then
configured according to the style they prefer. The immediate next few steps include
XML structures to define the next few layers of abstraction away from JsubXML, as we
work to solve user needs further from the server side and closer to the client side. One
example is an XML structure that would detail the pieces of a file name on tape that is
considered CLAS data. A user filling out this form can then use the parsing process as a
search engine to find all runs they are interested in, from matching either name patterns
or run characteristics from the online database. Another project is to create a relational
database to hold this XML, to make searching and recovering important JsubXML easier.

Acknowledgements

Thanks to Larry Dennis (dennisl@phy.fsu.edu) and Mark Ito (marki@jlab.org) for
providing the motivation and supervision of this project.

