CLAS-NOTE 2002-011

C interface to mySQL for monitoring and
storing CLAS data analyses results

Gagik Gavalian, UNH (2002)

1 Introduction

The CSQL is a package that allows to store characteristic results from the “cook-
ing” of CLAS data into a mySQL database. The produced tables can be used for
monitoring the cooking process as well as for post-cooking analysis of run period.
CSQL has been recently statically linked to RECSIS (standard distribution) and can
be activated with a TCL switche (explained later). There are two basic functionali-
ties of CSQL: first - real time generated tables to monitor progress of the “cooking”
, second - static final tables which store run related statistics in the database table.

A web interface exists for quick data displaying and table viewing.

The CSQL package can also be used as a standalone library. This document also
provides CSQL API documentation to help in developing of any stand alone codes.

2 RECSIS switches and ENYV variables

To activate CSQL package in RECSIS one needs to set a switche in the TCL input
file. The following switche is available :

set lmysql=-1; // activates csql package (default is = 0;)

Before starting the “cooking” process one needs to set up several environment
variables needed by the CSQL package. Following variables are defined:

Variable Name ‘ Description

CSQL_DBHOST database host name

CSQL_DB database name

CSQL_USER the user name of database account

CSQL_TABLE final result table

CSQL_DDL ddl file (for the group) to define columns for reconstruction
related variables e.g. Ne,Np, Nd

CSQL_CALIB ddl file to define column names for calibration related
parameters, e.g. RF mean, RF sigma ..

CSQL_COMM specify comment

NOTE: There is no password required. Cooking account must be without pass-
word.

CSQL package also stores information about calibration database used for the
cooking. Environmental variables that are defined for RECSIS are filled into final
databse for future reference. This variables are:

CLAS_CALDB_HOST calibration database host
CLAS_CALDB_RUNINDEX | Runlndex of constants
CLAS_CALDB_TIME time stamp

After all those variables are set, RECSIS can be run with modified TCL file.
Currently there are 3 groups defined in the default table. This groups are “SYST”,
“CSQL” and “CALB”.

e “SYST” group contains run-time system information (i.e. user name, process
id, node name). A typical printout from recsis can be found in Appendix G.

e “CSQL” group contains run statistic information such as number of events
processed, number of electrons reconstructed etc. (see Appendix F)

e “CALB” group contains calibration quality information for different detectors
(i.e. RF mean, RF sigma, EC time resolution etc.) (see Appendix F)

Information in “SYST” goes from defined enviromental variables. “CSQL” group
is filled in “ana” package. Values of parameters in “CALB” are filles in the end of
the run by “user_ana”.

3 Viewing Database

Once you have configured and run the produced monitoring database can be viewed
using either a standard WEB Browser (at http://clasweb.jlab.org/csql_db/) or ROOT

2

based tools which can be downloaded from the same web page.

There are some predefined graphs you can access through menu buttons of RootC-
SQLTools such as number of electrons reconstructed per run, RF mean and RF sigma
for each run, number of files “cooked” hourly and daily etc. On Figure 1 hourly and
daily “cooked” file statistics can be seen for eld run period.

[Cooked files per hour |

25

20

15

./ g Sl (SRIIRER A R

5 Jimm F, A .ol dil ol] b S & S

— 1 ! i ! 1 ! i
0 03:27 04:03 04:10 04:17 04:24 05:01 05:08 05:15

| Cooked files per day |

i i i = i i 1
03:27 04:03 04:10 04:17 04:24 05:01 05:08 05:15

Figure 1: Time graph produced by RootCSQLTools

The web based interface has already defined database settings for each run group
(to create a new one, please, contact clasdb administrator). On the Figure 2 the
starting page can be seen where run group can be selected. On the next page (after
hitting submit) the menu will let the user to select table within the selected database
(not on the figure). After selecting a run group and the table the full set of table
variables will be shown.One can select any combination of these variables to be viewed,
sorted by any of the variables. The number of rows per page and column name for
sorting can be pulled from given buttons (Figure 3).

On the Figure 4 the resulting table of some selection is displayed.

On the Figure 3 screen just below the table with column names and options there
is a link (not in the Figure) to the page where dynamic plots can be viewed by
selecting column on X axis and Y axis and adjusting some options.

On Figure 5 (in the Appendix E) an example plot can be seen. Simply choose
column name in the “X azis” and “Y azis” menu and press submit. One can also

b org/caql_db/

<a mailfo:.gavalian@jlab.org> ’V
r 1

"&Plese choose run group from meno below and click submit. This will
direct you to database created for particular run group.

Choose Bunpericd : I_

1" NOTE: If you do not see your oup in the ComboBox below please
contact me at gavalian@jlab.org

Figure 2: Web Based cooking database viewer

normalize “Y axis” value to other column in the table. In the case of Figure 5 number
of reconstructed electrons were normalized to number of processed triggers (NPROC).
The scale of the graph can be changed if desired. Just enter minimum and maximum
values of “Y azis” in the input boxes then press “Submit”.

4 CSQL Package description

CSQL package can be obtained from any CUE account at JLAB by checking out
from CLAS CVS tree (use: cvs co c_sql). The TOP_DIR environment variable should
be set to point to the directory where the compiled libraries will appear. The package
is written in C and has wrappers for FORTRAN code.

koim o SELECT. Cptions

raninde x

rnestamp

TeRS 3t] Order BY i

Paows perPage 10

FC____
FCG
|10

Where E.Iid:-l:l

R'.L“J : élhmit Qur}rI

Figure 3: This page allows to chose columns from the selected tables and display
them in the Browser

4.1 Initializing the library

Once the library has been compiled the CSQL package must be initialized the
library before any call to its functions is made. It is done by calling init_csql()
functions.

NOTE: If one is using this library as a stand alone or on network other than
JLAB one should set database parameters (i.e. host, database, user) by calling
set_database(char *hostname,char *username, char *password,char *DB_name)
since init_csql() sets default values (for JLAB users) and one may get execution error
trying to connect to databases without having permission.

When using as part of CLAS software init_clas() function can be used to ini-
tialize library from environmental variables (see section RECSIS switches and ENV
variables).

4.2 Creating Groups

Groups are collection of related variables. Each of them can contain different
number and types of variable. For instance, BEAM group can contain information

<a maiito:gavalian@jiab.org>

- ‘l' Rows 0 to 13 last are displayed. Click on NEXT to see next set of data.
Chaose QUERY: SELECT runno, EVID, NPROC, CPU, FC, TREAM, NeSl from eld pass2_00 where id>0 ORDER BY id

Bun Group

(=) Back Next »)
23142 4993555 136818 12385.2 hﬂ.ﬂ](! .11001 3238
23144 1569513 241491 9131.8 365 39004 a0z
23140 5054013 231132 3258 1.0953 00004 454
23141 1089932 298641 2579.8 4.5419 3
23139 3299294 410543 32184.9 4.0686 60006

23139 2061258 416064 33472.6 8534 18994 2
23138 5355301 231434 4093.9 3.0991 36016 5518
23160 2063113 215120 8190, 5 . 3065 102
23142 2380894 I98584 13466 8865 47999 8
23139 411872 411870 32942,9 1.735 14999

Figure 4: Table viewer

about the beam energy, the beam current e.t.c., ECCH parameters related to EC
(Electromagnetic Calorimeter). The names of groups are limited to 4 characters
(following BOS convention).

After the package has been initialized one can create groups. It is done by
add_group(const char *name) where ‘‘name’’ 1is a 4-character string. During
one session one can create as many as 20 groups (hard coded limitation, that can be
changed in the source code). After creating groups one can print them out at execu-
tion time with print_all_groups(); which will display all runtime defined groups.

Groups can also be created from a file in DDL format (DDL is a format used at
CLAS for formating BOS banks). For more information about creating groups from
DDL file see the next section.

Example 1:

/* this example demonstrates how to create groups and view them on the
screen */

#include ‘‘sdtio.h’’

#include ‘‘csql.h’’

int main(){
init_csql();
add_group(‘ ‘BEAM’) ;
add_group(‘ ‘SYST’’);
print_all groups();

}

4.3 Creating Columns

Columns are variables within a group. Each group can contain as many as 52
columns (elements). Each column is associated with one group and specified by
name, type (integer, float or character) and mode. Mode defines weather the variable
will be created and written in the table, and it can be changed at run time. There
are two following ways of creating a new column :

l.add_column(const char *group, const char *colname),
where the ‘ ‘group’’ is the group name that column will be associated with and
““colname‘‘ is the name of the column.

NOTE: The column names do not have 4 character length limitation. They can
be declared within 64 character length.

2.init_column(const char *group, const char *colname, const char *type,
int itype, int mode)

‘‘group’’ with name

This call will create a new column with within group
‘“colname’’ with given type and mode. The variable ¢ ‘type’’ is a character string
according to mySQL syntax (see documentation of mysql) defining the type of the
variable that will be used for the column in the database. Type commonly used by
mySQL are “INT” ”FLOAT” and CHAR(32) (means character string with 32 length)

As mentioned above, the groups and columns can be created from a file. The file

must be written in DDL format. By calling

n_columns = read ddlfile2(const char *filename)

the package will parse ¢ ‘filename’’ and create group with a name specified in
the file, and initialize all columns contained in the file within the created group.

The results of this can be seen by calling

print_group(char *grpname)

which will produce table type output on the display with content (columns) of the
group with its types and values.
Example 2:

#include ‘‘stdio.h’’
#include ‘‘csql.h’’
int main(){
init_csql();
add_group(‘ ‘BEAM’’) ;

init_column(‘ ‘BEAM’’,’’Energy’’,’’FLOAT’’,COL_TYPE_FLOAT,COL_CW_TBL) ;
init_column(‘‘BEAM’’,’’RunNo’’,’’INT’’,COL_TYPE_INT,COL_CW_TBL);
init_column(‘ ‘BEAM’’,’’Comment’’,’’CHAR(32)’’,32,COL_CW_TBL);

print_group(‘ ‘BEAM’’);

}

4.4 Storing results in columns

The simplest way to set the column value is to call one of these three functions

set_column_int (char *group, char *col, int value)

set_column_float(char *group, char *col, float value)

set_column_char(char *group, char *col, char *value)

It is important to remember the type of declared variables. If one declares it as
an INTEGER, then tries to assign it value with set_column_float(...), the value of
the column will not be changed.

If one is using CSQL package with BOS files (like RECSIS) one can also assign
values to all columns within a ‘group’’ if the group has been initialized from a DDL
file (see read_dd1file2(....)). One needs to pass a pointer to the first element of
the array containing data. This works only if there are INT and FLOAT columns in
the group.

Example 3:

/* This example will create a group and columns in the group
then assign values to the columns and print them on the screen
*/

#include ‘‘stdio.h’’

#include ‘‘csql.h’’

int main(){
init_csqlQ);

add_group(‘ ‘BEAM’) ;

init_column(“BEAM”,"Energy”,"FLOAT",CUL_TYPE_FLUAT,COL_CW_TBL);
init_column(‘ ‘BEAM’’,’’RunNo’’,’’INT’’,COL_TYPE_INT,COL_CW_TBL) ;
init_column(‘ ‘BEAM’’,’’Comment’’,’’CHAR(32)’’,32,COL_CW_TBL);

/* after creating columns let’s assign them values */

set_column_int (‘ ‘BEAM’’,’’RunNo’’,32456) ;
set_column_float (¢ ‘BEAM’’,’’Energy’’,12.05); // in couple of years
set_column_char(‘ ‘BEAM’’,’’Comment’’,’ ’Upgraded CLAS setup’’);

print_group(‘ ‘BEAM’’);

Here is an example how to initialize a group from DDL file, then fill it from an
array or BOS bank. It is not required to use a BOS bank as source of data, one can
also define an array which contains the given structure.

Example 4:

Here is an example of DDL file (/home/joe/csql.ddl)

! BANKname BANKtype !Comments
TABLE CSQL B32 ! Data bank for mySQL

!
ICOL ATT-name FMT Min Max !Comments

1 EVID I 1 100000 ! Event ID (number of triggers)
2 NPROC I 1 100000 ! Number of processed triggers
3 CPU F 0. 99999.! CPU used (sec)

4 FC F 0. 999.! Faraday Cup (K)

5 FCG F 0. 999.! Faraday Cup Gated (K)

6 TG F 0. 999.! Clock Gated

7 IBEAM F 0. 999.! Beam current

!

END TABLE

The lines with / at the first column are ignored by the parser.The third line
defines GROUP with name CSQL (B32 tells BOS that 32 bit format to be used).
Then variables are listed with following “I” or “F” (INTEGER or FLOAT). Min and
Max columns are ignored.

For the FORTRAN code examples see Appendix.

4.5 Writing Data to Database

Once all necessary GROUPS and COLUMNS have been created and data is as-
signed to COLUMNS, one can transfer the data into a database table. The CSQL
package provides routines to write data into existing table in the database as well as
to create a new one according to GROUP information defined run-time. If one tries
to write data into an existing table only columns which names coincide with ones
defined in the table will be exported into database, other will be omitted.

fill table(const char *tablename, const char *group_list)

exports data from GROUPS given by ¢ ‘group_list’’ into a table ¢ ‘tablename’’.
groups_list is a list of groups (i.e. “BEAMCSQLECPC”).

Then £i11_table(...) is called it first looks up the database to see weather table
with a given name exists or not. If not, it will create one using column names and
the types from the specified groups. If table exists it will extract column names from
existing table and will compare with ones in the given GROUPS. Only those column
values will be transfered to the existing table which have corresponding column name
in the already existing table.

Exampl 5:

/* add the following lines in the end of Example 3 and the program will
write the output into database

*/

fill_ table(‘ ‘mytable’’,’’BEAM’’);

}

4.6 Monitoring tables

As mentioned above the CSQL package can also be used for monitoring running
processes to extract dynamic data for long lasting jobs. In the package the is a default
table name defined constructed from node name and process id of currecnt job. There
is a prefix “mon_” added to default table name. Frmaple: If is is running a job on
host “farml2.min.edu” the default table name will be “mon_famri2_3456” (where 3456
is the process id). Since there can never be 2 jobs running on the same machine with
the same process id the default table name is always unique. This tables must be
deleted after job finished to aviod later confusions.

The monitoring tables are usefull if one has long lasting job running and would
like to monitor its progress. The table must be updated from the code.

10

The
fill mon_table(char *group._list)

function creates a table with default name (if it does not exist) and then fill content
of groups given by “group_list” into the table.
To delete created monitoring table one may use :

delete_mon_table()

This will delete table with default name from the database if such exists.

5 Function Reference

e void add_column(const char *group, const char *colname)
Adds a column with name ”colname” to the group ”group” and initializes it
with default parameters type="INT”, mode=COL_CW_TBL

e void init_column(const char *group, const char *colname, const char
*xtype, int itype, int mode)
Adds column to the Group and sets up the type and the mode of the column.

e void add_group(const char *name)

Creates a new GROUP with given name. Group name follow 4 character length
convention. If "name” is nore than 4 characters only first 4 will be used as a
group name.

e int connect mSQL_server (MYSQL *mysql,char *DB_hostname, char *DB_username,char
*DB_name ,char *DB_passwd)

Creates a connection with a database and returns 1 if successfull, -1 otherwise.

e void disconnect_mSQL_server (MYSQL *mysql)

Disconnects from the database.

e void create_table(const char *tablename, const char *group_list)

Creates table in the database already defined runtime (see set_database(...))
with given name.

11

int is_table(const char *tablename)

Checks default database for existance of a table with name “tablename”. Re-
turns 1 if table exists and -1 otherwise.

void delete_table(const char *tablename)

Deletes table with given name from default database.

void fill table(const char *tablename,const char *group._list)

fills table from groups given by "group_list”. 1f table does not exist, one will be
created with column names corresponding to columns in the groups. If table
already exists, only column from ”group_list” that have corresponding column
names in the table will be inserted into table.

void fill mon table(const char *group_list)

fills a defualt monitoring table from groups given by “group_list”. The table
name will be mon_[node name]|_[process id|.

void init_clas(int runno, int runext, const char *jobname)

This function initialyses CSQL package, then creates a new group called ”SYST”
which contains enviromental variable values described earlier in the document
neccesary to run RECSIS, also user id, node name. After you have called this
routine you can check its content with print_group("SYST")

void init_csql()

Initializes CSQL package enviroment. This function must be called before you
reffer to any other function in this package.

void set_database(char *hostname,char *username, char *password,char
*DB_name)

This function is used to set default database host, user name, password and
database name for the package. NOTE: Most of the function in the package
use this parameters to connect to database and read and write from it. So this
must be probably the second call after init_csql() before one starts to read from
database or write into one.

void print_all_params()

Prints on the display all internal parameter variables. Very usefull to have it
printed out before connecting to database to make sure you have set them up

properly.
int read_ddlfile2(const char *filename)

Reads DDL file and creates a "GROUP” with a group name and columns spec-
ified in the DDL file.

12

void set_column_int(const char *group, const char *col, int value)

Sets the value of column ”7col” in the group “group” to ”wvalue”. NOTE: The
package does not chack if you call this function for a variable of INT type so
you have to take care to not make a mistake there.

void set_column_float(const char *group, const char *col, float value)

Sets the value of column ”7col” in the group “group” to ”wvalue”. NOTE: The
package does not chack if you call this function for a variable of FLOAT type
so you have to take care to not make a mistake there.

void set_column_char(const char *group, const char *col, const char
xvalue)

Sets the value of column ”7col” in the group “group” to "wvalue”. NOTE: The
package does not chack if you call this function for a variable of CHAR type so
you have to take care to not make a mistake there.

void set_group(char *grpname, char *buffer)

This function is used in conjuction with BOS. First a group must be initialized
with read_dd1file2(...) then the pointer to the first element of BOS data
should be passed to the routine. It will automatically fill the columns in the
group with values from a buffer. Only INT and FLOAT types are supported
for this operation.

void get_user name(char *u_name)

This function returns user name of the process owner.The ”u_name” must be
initialized before this call and has to have at least 9 characters in length (one
might use even longer string to be safe).

void get_table_name(char *tbl_name, char *nodename, int max_len)

This function is used for monitoring puposes. It returns a unique table name
constructed from node name, user name and process id. So if one’s running
different jobs on same or different machnies and would like to monitor them
runtime by creating a table for each job to view progress of the programs this
routine might coma handy in defining different table names for each process.
Input parameters are : “nodename” - character string representing the host,
"maz_len” maximum length of the table name. Output : ”7tbl_name” - table
name to be used. NOTE: variable "tbl_name” must be initialized with length
"maz_len” before calling this function.

13

6 Appendix A: Column Types and Modes

Here is the list of column types and various modes used in the CSQL package with
their numerucal values and descriptions. This constants are used when initializing
column parameters (see init_column(...)). The names of this variables are defined in
the C include file hence can not be used from fortran code. One has to use numerical

values from FORTRAN code.

Types:

‘ Constant name ‘ Num Value ‘

Description |

COL_TYPE_INT

1

column of an integer type ‘

COL_TYPE_FLOAT

3

column of a float type ‘

NOTE!: If CHARACTER type column is defined the type must be set to be equal
to length of the CHAR string. See examples for more details.

Defined modes :

| Constant name | Num Value | Description

COL_C_TBL 1 | Column will be created in the table but
will not the value of it will not
be written in the table
(Used for TIMESTAMP variables)
COL_CW_TBL 2 | Column will be created and filled into table
COL_PRIKEY 3 | Column will be declared as a PRIMARY KEY
COL_PRIKEY_AUTO 4 | Column will be declared as a PRIMARY KEY
and will be assigned values automaticaly

7 Appendix B: Example of C code

A slightly more complicated example of C code that includes all basic types of

GROUP-COLUMN operations.

#include <stdio.h>
#include "csql.h"

int main(){

// This part defines an array of integers that can

14

// store integers and floats at the same time.
// This is same as FORTRAN’s EQUIVALENT command

int datal4];
float *data_f = (float *) &datal0];

// Now we set values in the array. 0f course one needs to know
// structure of the DDL file that will be used to initialize this group.
//

datal0] = 12000;

data_f[1] = 4.53;

datal2] = 8000;

data_f[3] = 145.678;

init_csqlQ);
set_database("clasdb","offline_eld","","eld_offline");

add_group("TORS"); // group to describe Torus run-tim parameters
add_group("BEAM"); // Beam characteristics
add_group("SYST"); // Group containing run-time system information

// Adding columns in the TORS group

add_column("TORS","Setting") ;
add_column ("TORS","Status") ;

// Adding columns in the BEAM group
add_column("BEAM","Energy") ;
add_column("BEAM","Current") ;
add_column("BEAM","Comment") ;
// Adding columns in the SYST group
add_column("SYST","system") ;

// now initializing columns with types and modes

init_column("TORS","Setting","FLOAT",COL_TYPE_FLOAT,COL_CW_TBL);

15

init_column("TORS","Status","INT",COL_TYPE_INT,COL_CW_TBL);
init_column("BEAM”,"Energy”,”FLUAT”,COL_TYPE_FLUAT,COL_CW_TBL);
init_column("BEAM","Current","FLOAT",COL_TYPE_FLOAT,COL_CW_TBL);
init_column("BEAM","Comment","CHAR(20)",20,COL_CW_TBL);
init_column("SYST","system","CHAR(32)",32,COL_CW_TBL);

set_column_float ("TORS","Setting",2550.3);
set_column_int ("TORS","Status",4);

set_column_float ("BEAM","Energy",4.182);
set_column_float ("BEAM","Current",7.5);
set_column_char ("BEAM","Comment","eld run period");

set_column_char("SYST","system","Red Hat 7.3");

// Example of defining a group from the DDL file and then setting
// values of it from an already defined array

read_ddlfile2("test.ddl");
set_group("DDLF", (char *) &datal0]);

// Printing all group onto screen
print_all_groups();

// and finally let as write a table into datavase that we have
// already selected in the beginning of the code

fill_table("my_first_table","SYSTBEAMTORSDDLF") ;

return O;

}

8 Appendix C: Example of FORTRAN code

Example in FORTRAN that reads group from the DDL file (see appendix D), fills
columns with values then exports them into a database table.

NOTE!: when compiling a FORTRAN code on Linux one needs to use “-fno-
second-underscore” flag.

16

PROGRAM CSQL_TEST

REAL RW(4)
INTEGER IW(4)
EQUIVALENCE (IW(1),RW(1))
C- Declaring two arrays INT and FLOAT in the same memory block
WRITE (*,*) ’Starting CSQL test program’
C- Setting initial values

Iw(1) = 45670
IW(3) = 32890
RW(2) = 45.6
RW(4) = 134.567

C- Firrst the CSQL package needs to be initialized
CALL INIT_CSQL
C- Reading DDL file. See Appendix for DDL file printout
CALL READ_DDLFILE2(’test.ddl’)
C- At this point all variables in the group will have
C- values set to O
CALL PRINT_ALL_GROUPS()
C- now let’s copy values from array into columns
CALL SET_GROUP(’DDLF’,IW(1))
C- Print it again to make sure values were transfered OK.
CALL PRINT_ALL_GROUPS()
CALL FILL_TABLE(’my_fort_table’,’DDLF’)
END

9 Appendix D: DDL file used in the example codes

' TABLE DDLF B32 ! Comment ! 1 NPROC I 1 10000! 2 CPU F 0. 999. ! 3
NRec111000! 4 FCUP F 0. 999. ! I END TABLE

17

10 Appendix E: Plot generated on the CSQL WEB

Page
8.07 ' |)
8.06 .
3.05 @ .
_, 0.04 .
e ¢
< .93 | ¢ g
] ﬁ“‘.m L 1
.02 | - g
2.91 - v 3 §
8 .
0 | | | | | . e |
CoBOERRONBR3DOMR31 002320233002 34002 350023600
Funnog
[Graph X and ¥ Qptions
Ll—-ﬁu NFROC o
[:l‘ rinne ...ll '—-—'——J
?&:}mﬁe
Y Bl o ’
Q ¥ Max . none
 Reset| Submit Query|

Figure 5: Plot Run number vs number of reconstructed electron per triger

18

11 Appendix F: CSQL and CALB DDL files used
in RECSYS

This ddl files can be found on JLAB CUE nodes in $CLAS_PARMS directory.
CSQL DDL file:

! BANKname BANKtype !Comments
TABLE CSQL B32 I create write display delete ! Data bank for mySQL
!

1COL ATT-name FMT Min Max Comments

1 EVID I 1 100000 ! Event ID (number of triggers)

2 NPROC I 1 100000 ! Number of processed triggers

3 CPU F 0. 99999.! CPU used (sec)

4 FC F 0. 999.! Faraday Cup (K)

5 FCG F 0. 999.! Faraday Cup Gated (K)

6 TG F 0. 999.! Clock Gated

7 IBEAM F 0. 999.! Beam current

8 NeS1 I 0 100000 ! Number of electrons in sect 1

9 NeS2 I 0 100000 ! Number of electrons in sect 2

10 NeS3 I 0 100000 ! Number of electrons in sect 3

11 NeS4 I 0 100000 ! Number of electrons in sect 4

12 NeS5 I 0 100000 ! Number of electrons in sect 5

13 NeS6 I 0 100000 ! Number of electrons in sect 6

14 Nhb I 0 1000000 ! Number of HB

15 Ntb I 0 1000000 ! Number of TB

16 Nprot I 0 1000000 ! Number of protons

17 Npip I 0 1000000 ! number of pip

18 Ndeut I 0 1000000 ! number of deutrons

19 Nphot I 0 1000000 ! number of photons

20 Nelhp I 0 1000000 ! Number of electrons at pos. Helic.

21 Nelhn I 0 1000000 ! Number of electrons at neg. helic.
!
END TABLE
CALB DDL file:
! ___
! BANKname BANKtype !Comments
TABLE CALB B32 I create write display delete ! Monhist fit results for mySQL

19

ICOL ATT-name FMT Min Max IComments

1 meanRFe F -2. 2. | RF offset for electrons (all sectors)
2 sigmaRFe F 0. 20. ! Time resolution for electrons (RF)
3 sigmaRFh F 0. 20. ! Time resolution for pions
4 sigmaECt F 0. 20. ! Time resolution of EC, tEC(e)-tSC(e)
5 SFECe F 0. 1. ! Sampling fraction E_EC(e)/p(e)
6 sigmaSF F 0. 1. ! width of the sampling fraction
7 ResSL1 F 0. 10000. ! DC residuals in R1 (all sectors)
8 ResSL2 F 0. 10000. ! DC residuals in R2 (all sectors)
9 ResSL3 F 0. 10000. ! DC residuals in R3 (all sectors)
10 ResSL4 F 0. 10000. ! DC residuals in R1 (all sectors)
11 ResSL5 F 0. 10000. ! DC residuals in R2 (all sectors)
12 ResSL6 F 0. 10000. ! DC residuals in R3 (all sectors)
I
END TABLE

12 Appendix G: RECSIS output with csql switch
on

Here is a typical output produced by RECSIS-CSQL

Programs Initialized with following parameters..

======3>>>>>

PAR=> DATABASE HOST : clasdb. jlab.org

PAR=> DATABASE USER : offline_e2b

PAR=> DATABASE DB : e2b_offline

PAR=> MONITOR TABLE : mon_ifarmll_11150

PAR=> DEFAULT TABLE : e2b_pass0_00

PAR=> DDL FILENAME : /group/clas/builds/PRODUCTION/packages/bankdefs/csql.ddl

PAR=> CALIB DATABASE : default
PAR=> CALIB RUNINDEX : calib_user.RunIndexe2b
PAR=> CALIB TIMESTAMP : 20370101220926

======3>>>>>

T +
| Group [SYST] Columns | Column Type | TYPE | Value |
e e L +
| time | TIMESTAMP (14) | 1l I
user	CHAR(12)	2	clase?
jobname	CHAR(32)	2	passO_cooking]
node	CHAR(32)	2	ifarmli]

20

calibdb| CHAR(64) | 2| default|

I

| runindex| CHAR(32) | 2|calib_user.RunIndexe2b|
I timestamp]| CHAR(16) | 2] 20370101220926|
| runno | INT| 2| 32973]
| runext | INT| 2| 1]
- +
| GROUP [SYST] has 9 columns |
- +
R et et T e L LT +
| Group [CSQL] Columns | Column Type | TYPE | Value I
e e +
| EVID| INT| 2] 0l
| NPROC | INT| 2] 0l
I CPU| FLOAT| 2] 0.000000]|
I FC| FLOAT| 2] 0.000000]|
I FCG| FLOAT| 2] 0.000000]|
I TG FLOAT| 2] 0.000000]|
I IBEAM| FLOAT| 2] 0.000000]|
I NeS1| INT| 2| 0l
I NeS2| INT| 2| 0l
I NeS3| INT| 2| 0l
| NeS4 | INT| 2] 0l
| NeS5| INT| 2] 0l
I NeS6 | INT| 2] ol
I Nhb | INT| 2] ol
I Ntbl| INT| 2] ol
| Nprot | INT| 2| 0l
I Npipl INT| 2] 0l
| Ndeut | INT| 2| 0l
| Nphot | INT] 2| 0l
| Nelhp| INT] 2| 0l
| Nelhn| INT| 2] 0l
- +
| GROUP [CSQL] has 21 columns |
R et et T e L LT +
R et et T e L LT +
| Group [CALB] Columns | Column Type | TYPE | Value |
e e +
| meanRFe | FLOAT| 2| 0.000000|
I sigmaRFe| FLOAT| 2| 0.000000 |
I sigmaRFh | FLOAT| 2| 0.000000 |
I sigmaECt | FLOAT| 2| 0.000000 |

21

SFECe |
sigmaSF|
ResSL1|
ResSL2|
ResSL3|
ResSL4 |
ResSL5|
ResSL6|

Booking seb histos
s

FLOAT| 2|
FLOAT| 2|
FLOAT| 2]
FLOAT| 2]
FLOAT| 2]
FLOAT| 2|
FLOAT| 2|
FLOAT| 2|

EC1 booking ++++++++++++++

Read EC pedestals from Map - Run 32973

22

O O O O O O O O

.000000 |
.000000 |
.000000 |
.000000 |
.000000 |
.000000|
.000000|
.000000|

