CLAS-NOTE 2002-015
CVS: docs/clas_notes/taskMaster

Progress Tracking Of Batch Farm Jobs: taskMaster
Database

PAWEL AMBROZEWICZ, MARK M. ITO
September 18, 2002

Abstract

The taskMaster database, which is described in this document, was created to
facilitate tracking the progress of jobs submitted to the batch farms. In principle, the
jobstat command and JASMine status web pages are sufficient to track job progress,
but using them is rather non-trivial, time consuming and must be done in a timely
fashion. To alleviate the problem, a set of Perl scripts was developed to populate a
MySQL database and provide the user with easy access to the progress information.

1 Introduction: Batch Farm Requests

1.1 Glossary

To reduce ambiguities to a minimum, the vital terms used in the text must have definite
meaning. Necessary definitions have been formulated in the section below.

farm task: A set of farm requests, all having an identical value of the JOBNAME keyword in
their jsub command files. Note that a single task can include multiple farm requests.

farm request: A single invocation of the jsub command. A farm request always takes as
input a single job command file, as described at

http://cc.jlab.org/docs/scicomp /how-to /keywords. htmi.

Note that a single farm request can result in multiple farm jobs.

farm job: The actual executable entity that is run on a farm node. This is the object that
is scheduled by the batch farm software and runs on a single, assigned node as job slots
become available. It is the thing you see as an entry in the farm job queue listings.

silo request: A single invocation of the jput, jget or jcache commands. These request that
a files or files be written to the silo, retrieved to an arbitrary location, or retrieved to a
cache disk respectively. Note that a single silo request can result in multiple silo jobs.

silo job: A single-file operation of the silo, either read or write.

jcache farm request: A particular type of farm request. It has the following properties:

e It is submitted by the farm software, in response to a farm request that has silo
files listed as values for its INPUT_FILES keyword.

e It is submitted to the jcache queue. The jcache queue is a queue in the batch
farm system, like production and low_priority.

e It executes a single jcache command when it runs and then exits. The jcache
request may or may not request multiple files. The files are cached to the farm
stage cache disks.

In this note, if there is no ambiguity, a farm job will simply be referred to as a job and a
farm request will be referred to as a request.

1.2 Sequence of Events

In the following it is assumed that the user has listed multiple files with the INPUT_FILES
keyword of the jsub command file to create multiple jobs on the farm, each using one of
these files. Execution of a job at the batch farm machines, managed by the Load Sharing
Facility (LSF), proceeds through the following stages,

1. A job is submitted via a jsub command which takes as an argument a name of a com-
mand file (see http://cc.jlab.org/docs/scicomp/how-to/keywords.html for examples):
jsub filename
The farm software issues a farm request 1D.

2. The input files in the jsub command file are put into groups of ten (the last group
may contain fewer than ten files).

3. For each group, a jcache farm request is generated. When this farm job runs, a jcache
silo request is issued to the silo system.

4. For each group, separate farm jobs are created, one for each input file in the group.
All of the jobs in the group are put into the PEND state.

5. As each group’s jcache silo request completes, the group’s farm jobs are allowed to
run if free job slots are available. If free slots are not available, the jobs continue to
pend. Note that none of the jobs in the group are allowed to run until the jcache silo
request corresponding to this group is complete; that is until all files in the group have
been retrieved to the cache disk. Note further that there are never more than ten files
requested in any one jcache silo request.

6. Eventually each farm job enters the “RUN” state. When completed successfully, the
state is changed to “DONE”. If it encountered software or hardware problems during its
execution the job could be killed (“EXITED”) or go into unknown state (“UNKWN").

2 taskMaster DB: Overview of the Model

The database itself consists of five tables,

e task: for storing information for all tasks,

e jsub: for storing information for submissions within a task,

e farmjob: for storing information for farm jobs within a submission,
e jcache: for storing information for jcache requests associated with a submission,
e silojob: for storing information for tape silo jobs within a jcache request.

where all the information, necessary to track down the task progress, is stored. Composition
of each table and the way each field is being filled are shown in Figure 1 and Appendix A.
In the present implementation the first execution of TMsubmit.pl results in an auto-
incremented task entry in the task table with the name as given in the submission file under
optional keyword JOBNAME. Repeated submissions with the same JOBNAME (task name) add
new entries pertaining to the same task.

7

t ask

user Name
t askName

timeStart
nSubmi t

| ast Submi t

33

j sub

bat chReql d
jSubFile
nFiles

jsubStart
j SubEnd

farnj ob

— taskMaster Database Model

t askl d

farmlobl d
farnBtart
f ar nFi ni sh
f ar nSt at us
f ar mHost
ti meCheck
ti meChange
pendReason

bat chRegl d
hJcachel d
|

FRGN

silojob

sil oJobl d
fil eName
siloStart
si | oFi ni sh
sil oSt at us
siloError

j cache

J cachel @

j cachel d
bJcachel d

jcacheStart

j cacheFi ni sh

j cacheSt at us
j cacheHost

33

Figure 1: taskMaster Database: This diagram explains the way the taskMaster database
tables are related. “Crow feet” correspond to one-to-many relationships between the tables.

3 The Scripts

The taskMaster (TM) Perl library, developed to ease the tracking process, consists of
four scripts,

1. TMsubmit.pl - submits a request to the batch farm and waits until all the input files
are queued. In this way, information sufficient for a successful execution of the update
script, TMupdate.pl, is obtained. TMsubmit.pl performs initial population of the
database tables pertaining to a given farm request.

2. TMupdate.pl- updates old or inserts new information as it becomes available; timely
execution is necessary.

3. TMdump.pl - dumps, in a concise form, essential information (request/job ID’s,
status, start/finish times, hosts) on standard output.

4. TMdelete.pl - deletes a task from the taskMaster database.

Invoking each script without any arguments prints out the usage on the standard output.

3.1 Initialization: TMsubmit.pl

Initialization of a task in the taskMaster database is handled by Perl script TMsub-
mit.pl. It takes as an argument the name of the jsub command file and does the following,

(*) submits the task: it issues jsub command using a command file provided by the user.
The command file must have a value for the JOBNAME keyword. This value will be used
as the name of the task. If this task does not exist already, one will be created.

(*) captures jsub output: the output of jsub is piped through the script; this output
contains batch request ID which uniquely identifies the submission.

(*) issues jobstat command: polls the batch farm system in order to verify whether all
the jobs were scheduled; this allows to extract batch farm jcache ID’s, which is vital
for the tracking purpose,

(*) populates taskMaster DB tables: it again issues jobstat and parses its output to
extract the information necessary to describe the task and inserts appropriate pieces of
information into the taskMaster tables. It tries to match batch farm jcache ID with
tape silo jcache ID, if the request to the silo has already been made. The whole idea
of this project hinges on this identification which is being made by matching farm start
time and silo submit time given a user name, type of tape silo request (jcache) and a
host name designated to handle the request. In case the link cannot be made the farm
jcache ID is inserted into the farmjob table while silo jcache ID is assigned a zero
value.

The following is the usage message from TMsubmit.pl:

4

TMsubmit.pl: Depending on the arguments specified on the command line
it is capable of submitting a job to the batch farms via
issuing the "jsub myfile" command, populating the taskMaster
database and retaining in a separate file ("filename")
the request ID issued by LSF software upon submitting a job
to the batch farms.

USAGE: TMsubmit.pl jsubfile=<myfile> [reqfile=<filename>]
TEMPLATE: TMsubmit.pl jsubfile=
TEMPLATE: TMsubmit.pl jsubfile= reqfile=

3.2 Information updates: TMupdate.pl

Any subsequent update is done by running TMupdate.pl. This needs to be performed
frequently as the information available through jobstat command is not stored in any
database for long. It becomes unavailable after 1 hour unless the number of jobs in the queue
is greater than 1000. In that case it is removed even faster. Therefore timely execution of
the script is desired. TMupdate.pl performs the following,

(*) Updates the existing task database information by comparing it with jobstat out-
put and/or with information obtained from the tape silo database (JobQueue - on
mssdbl); especially important is identifying the correct silo jcache ID’s for which
corresponding farmjob entries are zeros, which is done the same way as in TMsub-
mit.pl

(*) Inserts any task information not available at the time TMsubmit.pl was run. This
is usually information from the tape silo database.

The following is the usage message from TMupdate.pl:

TMupdate.pl: Updates progress info for the task submitted to batch farms
via issuing "jsub jsubfile" command.

USAGE: TMupdate.pl jsubfile=<myfile>

TEMPLATE: TMupdate.pl jsubfile=

3.3 Checking the progress
3.3.1 Standard Output Print-Out: TMdump.pl

To view the essential pieces of information one can execute TMdump.pl. This script
prints on the standard output job ID’s on the farm, jcache and silo levels as well as start /finish
times, job hosts and job states. An example of such a printout is shown in Figure 2. In this
example a task consists four separate submissions: three single-input-file submissions and

one multiple-input-file submission. Each submission in turn is displayed in four sections. The
first corresponds to the farm request generated by this submission and shows its beginning
and ending times. The second section displays a line for each farm job generated from
the farm request. The third section connects the silo jcache requests with their respective
parent jcache farm requests. The fourth section shows the progress of the individual silo
jobs.

The following is the usage message from TMdump.pl:

TMdump.pl: Dumps database info for the task submitted to batch farms
via issuing "jsub jsubfile" command.

USAGE: TMdump.pl jsubfile=<myfile>

TEMPLATE: TMdump.pl jsubfile=

3.3.2 Task Database Query Page: tabledump.pl

An alternative way of accessing query results is invoking a web interface tabledump.pl.
Figures 3 and 4 show consecutive dynamically generated webpages with the results. The
URL location of the script is

http://clasweb. jlab.org/cgi-bin/farm/tabledump.pl.

3.4 Termination: TMdelete.pl

To terminate a task and delete the corresponding entries from the taskMaster database
TMdelete.pl has to be executed. This completes the task.!
The following is the usage message from T'Mdelete.pl:

TMdelete.pl: Deletes database info for the task submitted to batch farms
via issuing "jsub jsubfile" command.

USAGE: TMdelete.pl jsubfile=<myfile>

TEMPLATE: TMdelete.pl jsubfile=

A Description of the Database Tables

This section is intended to provide the reader with a detailed description of the way each
database field is filled. Each field is identified by its tag called key. To populate the database
tables unambiguously some of the fields must be unique - the corresponding keys are called
primary. Also, to model the relations between the tables for each one-to-many mapping the

L As of this writing this function has not been fully implemented. Please check with the authors if you
experience difficulty clearing out your old tasks.

jcache Id

batchId farm Id farm silo silo Id status start finish node
662385 06-13 09:01:35 06-13 09:32:01
662385 987293 666078 EXIT 06-13 09:12:43 06-13 09:32:01 farml104
662385 666078 431107 Done 06-13 09:04:57 06-13 09:12:15 farmli3
662385 431107 1 Failed 06-13 09:04:57 farml13
666728 06-19 06:50:05 06-19 07:19:47
666728 993661 670449 DONE 06-19 07:17:22 06-19 07:19:47 farml105
666728 670449 437601 Done 06-19 07:02:15 06-19 07:16:16 farmli3
666728 437601 1 Done 06-19 07:11:04 06-19 07:16:16 farmli3
666729 06-19 06:51:06 06-19 08:31:13
666729 993663 670450 EXIT 06-19 08:31:13 None
666729 670450 437602 Done 06-19 07:03:29 06-19 09:07:44 farmli3
666729 437602 1 Done 06-19 09:04:23 06-19 09:07:44 farmli3
676029 06-26 12:36:22
676029 75086 679765 RUN 06-26 13:31:23 farml39
676029 7505 679765 RUN 06-26 13:31:23 farml168
676029 7507 679765 RUN 06-26 13:31:23 farml47
676029 7508 679765 RUN 06-26 13:31:23 farml181
676029 7509 679765 RUN 06-26 13:31:23 farml41l
676029 7510 679765 RUN 06-26 13:31:24 farml51
676029 7511 679765 RUN 06-26 13:31:24 farml1182
676029 7512 679765 RUN 06-26 13:31:24 farml152
676029 7513 679765 RUN 06-26 13:31:24 farml44
676029 7514 679765 RUN 06-26 13:31:24 farml156
676029 7516 679766 PEND None
676029 7517 679766 PEND None
676029 679765 448854 Done 06-26 12:37:13 06-26 13:30:47 farmli3
676029 448854 1 Done 06-26 12:41:34 06-26 13:07:11 farmli3
676029 448854 2 Done 06-26 12:40:38 06-26 13:08:09 farmli3
676029 448854 3 Done 06-26 12:43:42 06-26 13:09:18 farmli3
676029 448854 4 Done 06-26 12:46:00 06-26 13:13:29 farmli3
676029 448854 5 Done 06-26 12:50:18 06-26 13:05:18 farmlil3
676029 448854 6 Done 06-26 12:46:02 06-26 13:13:52 farmlil3
676029 448854 7 Done 06-26 12:55:30 06-26 12:55:31 farmli3
676029 448854 8 Done 06-26 13:00:13 06-26 13:10:41 farmli3
676029 448854 9 Done 06-26 13:05:04 06-26 13:29:11 farmli3
676029 448854 10 Done 06-26 13:09:41 06-26 13:30:47 farmli3
676029 679766 448855 Active 06-26 12:46:30 farml12
676029 448855 1 Done 06-26 12:49:12 06-26 13:04:37 farmli2
676029 448855 2 Running 06-26 13:15:11 farmli2

Figure 2: Output of TMdump.pl.

Task Database Query Page:

Information on claspc2.jlab.org = taskMaster

Enter the task name and us

ask name: |

Information on claspc2.jlab.org => taskMaster => task

Task Search Results for argunents:

Information on claspc2.jlab.org => taskMaster == task => jsub

Display Batch Farm Submissions Results for argunents:

er name {task name: task Id

Figure 3: Task Database Query Pages: (Top) Task Database Query Page. (Center)
The results page. The query performed corresponded to leaving blank task and user name
spaces. (Bottom) The results page for a selected task Id.

Information on claspc2.jlab.org => taskMaster = task => jsub => farmjob

Display Faom Johs Besults for arguments:

Efal‘m ache [farm I} time start]] i i time check i last changed {hatch It}

Information on claspc2.jlab.org == taskMaster == task == jsub => farmjob ==
Jcache

Display Jeache Requests Results for argunents:

Information on claspc2.jlab.org => taskMaster =2 task == jsub == farmjob == jcache =2 silojob

Display Silo Johs Results for argunents:

Figure 4: Task Database Query Pages: (Top) The farm jobs page for previously selected
task ID and for a given submission (identified by batch farm request ID). (Center) The jcache
request page associated with a given farm job. (Bottom) The tape silo page for a selected
jcache ID.

primary key on the “one” side of the relationship is placed into the table on the “many” side
- the corresponding keys are called foreign. In what follows the primary keys are color-coded
red while the foreign keys are color-coded green. All ordinary keys are in black.

1. task: stores task information and in present implementation consists of six fields,

e taskld - Unique numerical identifier for all tasks, past and present.

e userName - the corresponding field is filled by importing the appropriate environ-
mental variable into TMsubmit.pl; this prevents the tasks with the same task
name but for different users to be merged together under one taskld,

e taskName - the value of the field is taken from the JOBNAME keyword field in the
jsub command file by parsing the content of this file,

e timeStart - the value of this field is obtained by using Perl function time which is
fed through another Perl function, localtime, and the result is converted to one
of the MySQL time-stamp formats (YYYY-MM-DD hh:mm:ss); this time refers to
the time of the first submission of the task.

e nSubmit - a key whose field is incremented with each submission pertaining to the
task,

e lastSubmit - this field value corresponds to the time of the most recent submission
and is obtained the same way as described in the timeStart case,

2. jsub: holds the information pertaining to jsub submissions in six fields,

e batchReqld - the ID number assigned to the request by LSF software; this field val-
ue is obtained by piping the output of jsub command through the TMsubmit.pl
script,

e jsubFile - the field which contains the name of the jsub command file which is
passed to the submitting script as an argument,

e nFiles - the value of the field is filled by parsing the content of the jsub command
file from TMsubmit.pl,

e jsubStart - a key whose field contains the time at which the request was submitted
to the batch farm.

e jsubEnd - a field containing the time of termination of the last single input file job
as reported by jobstat run with -a -1 -u user options.

) - this field ties a given submission with an appropriate task,

3. farmjob: the information contained in this table pertains to single input file farm jobs
and is mainly retrieved from the jobstat command output and stored in ten fields,

e farmJobld - this field stores the ID number of a job as reported by the LSF software;
it is retrieved by parsing the output of the jobstat -a -1 -u user command.

e farmStart - a field filled with the time at which the transition from “PEND” state
to “RUN” occurs; obtained from the output of the jobstat command.

10

e farmFinish - a field holding the time the job was finished, meaning its state was
changed from “RUN” to “DONE” or “EXITED”; again, obtained from the output
of the jobstat command.

e farmStatus - this field contains current state of the job; this one is also obtained
from the output of the jobstat command.

e farmHost - a key whose field contains the name of the node executing the job; also
obtained from the output of the jobstat command.

e timeCheck - in this field the time of the most recent running of the TMupdate.pl
is recorded.

e timeChange - the time of any change in the status of any job pertaining to a given
submission is inserted/updated in this field.

e pendReason - the message on why the job is pending as reported by LSE software
is stored in the field; again, obtained from the output of the jobstat command.

° - this field value links a given job with the submission that generated
it,

° - the numbers contained in this field provide the vital information that
links jcache requests at batch farm level with jcache requests at tape silo level.

4. jcache: the information contained in this table corresponds to jcache requests generated
by a given submission and, as it is implemented, it is stored in six fields and is linked
with the appropriate submission by making bJcacheld-jcacheld identification,

e jcacheld - a field whose value is obtained by performing a MySQL query on the
tape silo JobQueue database, searching for a silo request to match the farm jcache
job. Identification is done on the value of the userName, type of the tape silo
request (which, by definition, is jcache), the node handling the request and
the requirement that the start time at the farm be approximately the same as
submission time at the silo,

e bJcacheld - this field provides the necessary identification with the batch farm
jcache job,

e jcacheStart - the start time of a jcache request as found by MySQL query of
JobQueue database ,

e jcacheFinish - the end time of a given jcache request as found by MySQL query
of JobQueue database,

e jcacheStatus - the status of the jcache request as found by MySQL query of
JobQueue database,

e jcacheHost - the name of the node performing the jcache request,

5. silojob: stores the information on the progress of each silo job; ID’s are obtained by
querying the JobQueue database,

e siloJobld - this field contains the ID number of a given job,

11

B

$1d:

fileName - the name for the file that should be copied from silo to a local disk; this
name should match the appropriate name in the jsub command file (this could
provide the final check whether the silo jcache requests were identified correctly),

siloStart - the start time of a silo job as returned by JobQueue MySQL query,

siloFinish - the end time of a silo job as returned by JobQueue MySQL query,

siloStatus - the state of a silo job as returned by JobQueue MySQL query,

siloError - this field contains the error message in case of failure of the silo job,

° - the value of this field ties the silo job to the appropriate jcache request.

To-Do List

The issues that, sooner or later, need to be addressed,

e implement SINGLE_JOB and MULTI_JOBS requirements in the TMsubmit.pl script,

e T'Mupdate.pl script should optionally be called with a task name as an argument
rather than a jsub command file name,

e include the input file names in the farmjob table.

taskMaster.tex,v 1.13 2002/10/02 13:45:17 pawel Exp $

12

