CLAS-NOTE 2002-017 CVS: docs/g1ccook/g1c_cooking.tex Original: September 25, 2002 Version: 1.0

Jefferson Laboratory Hall B

G1C Data Calibration and Cooking Procedures, characteristics, information Luminita Todor Carnegie Mellon University

September 2002

Contents

1	Introduction	4
2	Calibrations	5
	2.1 Photon Data Calibration Order	5
	2.2 Tagger Calibration	7
	2.3 Time-of-flight Calibration	7
	2.4 Drift Chamber Calibration	12
	2.5 Start-Counter Calibration	12
	2.6 Electromagnetic Calorimeter Calibration	18
	2.7 Large Area Calorimeter Calibration	18
3	Technical Details of Cooking	21
	3.1 Software Versions and a1c Command Line	21
	3.2 Cooking Scripts and Monitoring	23
	3.3 Cooked File Bank Content Adjustment	23
	3.4 Dead-wires Removal at Cooking	25
4	Filtering Cooked Files	27
	4.1 G1_filter Software	27
	4.1.1 Present Implemented Filtering Functions	28
	4.1.2 How to add a filter to $g1_filter$	30
	4.2 Location of Output Filters and Ntuples of the G1C Cooked	
	Data	31
5	File Tailoring and Normalization	32
A	List of runs processed in pass1 for electron beam energy of 2445 MeV	36
		50

в	List of runs processed in pass1 for electron beam energy of 3115 MeV	39
С	List of runs processed in pass1 for electron beam energy of 2897 MeV	43
D	Additional Drift Chamber Calibration Plots	45

Chapter 1

Introduction

The G1C data was acquired in October-November, 1999. The tagged photon beam was incident on a hydrogen target and the final reactions products detected in CLAS. The run list created by shift workers during data acquisition can be seen at http://clasweb.jlab.org/rungroups/g1c/oct99.html.

Hall B raw data is acquired in units called runs. During data acquisition, every run is split into files of 2GB size; in g1c data sets there were about 10 files in each run. One run is expected to have uniform characteristics, because planned changes to experimental set-up were done in between runs. The information in the raw data files is grouped in banks, as described in CLAS Note 1993-002 [1]. By 'cooking' is denominated the processing of the raw information to identify and group quantities suitable as input to physics analysis. The most time-consuming part of this processing is the reconstruction of charged particles tracks in the drift chambers. Due to the long computing time (in the case of the G1C data set processing one file takes about 8 CPU hours), the cooking has to be done by one 'cooking chef' for each data period, when the group agrees that subsystems calibration has achieved desired quality.

The cooking process model is presented in CLAS Note 1999-016 [2]. The present document aims to describe the steps and characteristics of G1C data set calibration and cooking as a follow-up of the above mentioned note, with the changes in the computing and software development conditions in which this processing was done. Cooking and monitoring is done on individual file basis. The G1C cooking web address is

http://clasweb.jlab.org/rungroups/g1c/g1c_gata.html.

Chapter 2

Calibrations

2.1 Photon Data Calibration Order

The ideal calibration order is presented in Table 2.1. Calibration has to be done at every beam energy change or when the monitoring indicates drifts. A general feature of all calibrations is the need to align their timing with CLAS timing - the detector as entity. Data acquisition is common start, meaning once a trigger was detected time counters start measuring the time until a signal is detected and then they stop and record the data. It is important when processing the raw detector information to account for all time offsets or propagation times in order to be able to rebuild the physics event. The trajectory in drift chambers can be rebuild in a first stage without information from other detectors in a hit-based (HB) track. Going from the rough HB track to a complete time-based (TB) track, requires timing alignment of the drift chamber within CLAS detector. The TOF scintillator is the pivot for the time-of-flight measurement. However a second time reference is necessary to calculate the speed of a particle detected in CLAS. In the case of electron runs, the electron trajectory correlated with the beam RF signal are the second time reference. In the case of photon runs (as G1C) the start-counter detector with the beam RF signal provides the second time reference. The G1C trigger required then hits detected in the tagger counters, start-counter and TOF scintillators.

Device	Particularities			
Tagger	Align T-counter and E-counter tim-	Any physics data can be used for tagger calibration.		
	ing against the RF beam signal.			
Time-of-flight (TOF)	Optimize the time and hit position	Prior starting TOF calibration a reasonable DC calibra-		
Scintillators	reconstruction, align the 48 paddle	tion is necessary. In TOF calibration, dedicated data as		
	timing with each other and within	well as physics data are used at different stages.		
	the CLAS detection timing scheme.			
Drift Chambers	Optimize charged tracks recon-	Prior starting TOF calibration a reasonable TOF cali-		
(DC)	struction	bration is necessary. Any physics data can be used for		
		DC calibration.		
Electromagnetic	Optimize the time and energy re-	EC time calibration uses comparison with the TOF time		
Calorimeter (EC)	construction	and therefore has to be done after TOF calibration is		
		complete. Any physics data can be used for EC time		
		calibration. The EC energy calibration is done by op-		
		timizing the reconstructed the neutral pion mass ou		
		two EC detected photons.		
Large area calorime-	Optimize the time and energy re-	LAC is physically located at bigger deflection angles than		
ter (LAC)	construction.	the EC. It is essentially same type of detector and uses		
		same techniques for calibration as EC.		
Start-Counter (ST)	Align the ST paddles reconstructed	Initially during G1A run period the start-counter was		
Calibration	within the CLAS detection timing.	hardware aligned. For G1C we made small adjustments		
		by comparing the pion timing with the TOF timing.		

Table 2.1: Ideal calibrations order for the photon data.

6

2.2 Tagger Calibration

There are 4 sets of constants used in the tagger reconstruction software as presented in Table 2.2.

In August 2000 we started with the belief that the tagger calibration was done. The tagger calibration software wasn't working anymore and overall the tagger times seemed aligned. In the summer of 2001 Ji Li (RPI) rewrote and enhanced the tagger calibration software. Using the new tool we enhanced the g1c tagger calibration too. In the context of using *gflux* photon flux calculation method, requirements for accurate counter-by-counter tagger calibration were higher. The 2.4 GeV and 3.1 GeV data sets were already cooked at that time. The re-cooking of these data is not necessary as long as during the analysis the tagger results bank (TAGR) and physics banks that use tagger results (such as PART bank, and the respective SEB banks) are rebuilt. However we re-run the filters because event selection was directly impacted for few counters by the change in the calibration.

Name	Map	System(item)	No. items
TDC slopes	TAG_CALIB	$tag_t/slope_left(right)$	2*61
E Pedestal position	TAG_CALIB	tag_e/dt	384
T Pedestal position	TAG_CALIB	$tag_t/dt_left(right)$	2*61
RF offsets	RF_OFFSETS	F(1-4)/low/high/p(1-4)	4*6
Ci Tagger-RF	TAG_CALIB	tag_t/ci	121
Time alignment	TAG_CALIB	tag2tof/value	1

Table 2.2: Values established in the tagger calibration procedure.

For each cooked file we have checked from the photon monitor output histograms as shown in Figure 2.1 and 2.2.

2.3 Time-of-flight Calibration

During the time-of-flight (TOF) scintillator paddles calibration work we used the CLAS Note 1999-011 [4]. In g1c data set TOF calibration the coupledpaddle correction was implemented and done for the first time by Jim Ball (ASU) and Eugene Pasyuk (ASU). Contribution to improvement of the guidelines for TOF calibration by g1c team were included in the revised version of CLAS Note 1999-011[4].

Figure 2.1: Ideally all counters should be aligned with the RF (on the red line) independent of the geometrical position of the hit in the counter.

Figure 2.2: The upper plot shows the RF calibration quality; in the lower plot can easily be seen the accidental coincidences from the neighbor beam bunches at 2ns intervals.

For each cooked file we monitored the TOF quality. On this purpose besides visual check of the π^+ timing in each sector (Figure 2.3), we have compared to a reference the hits fraction in each paddle (Figure 2.4).

Figure 2.3: The TOF check in the 6 CLAS sectors.

Figure 2.4: The fraction of good hits in each counter. The red line is the the fraction determined for a reference file. This fraction is determined by geometry of the counters, detection efficiency and $\gamma + p$ total cross-section angular distribution.

2.4 Drift Chamber Calibration

Drift chamber calibration converged reasonably most of the time although it is a very tedious procedure involving multiple time-consuming re-cooking. Both software and strategies were continuously improved in the period in which g1c data set was calibrated and then cooked (see CLAS Note 1999-018[5]). The calibration stability was monitored continuously in parallel with the cooking. For each wire we have a time measurement. The distance of closest approach (DOCA) of the charged particle to the wire is calculated using a drift velocity function. The clustered wires hits are then fitted with a track and based on this another fitted DOCA is estimate. In case of a correct calibration the relation between calculated DOCA and fitted DOCA is illustrated in Figure 2.5.

The quantity that we usually refer to when checking the DC tracks reconstruction is the difference between calculated DOCA and fitted DOCA called residuals. The residuals histogram is fitted with a sum of two Gaussians; the mid position is expected to be at 0, the width of one Gaussian should be around 300 μ m and the other 800 μ m. A typical file sheet for checking DC calibration is presented in Figure 2.6. Using a single optimized set of parameters we can see that during g1c 2.9 GeV data set the residual width and position remained reasonably stable (figures 2.7,2.8).Additional figures can be seen in the appendix.

2.5 Start-Counter Calibration

Without having a standard procedure for start counter timing calibration, we have changed offsets (see Table 2.5)s such as aligning the start counter paddles with TOF and tagger as shown in Figure 2.9.

Name	Map	Location (system/item)
Individual paddles offsets	ST_CALIB	$delta_T(value) 6$
Offset vs CLAS	ST_CALIB	st2tof(value) 1

Table 2.3: Values established in the start counter calibration.

The good timing calibration of tagger, start counter, and TOF scintillators, together with good drift chambers calibration contribute to a good particle ID and reconstruction as shown in Figure 2.10.

Figure 2.5: The fitted distance of closest approach (DOCA) versus time.

Summary for trkm21428.hbook

Time residual sigmas, narrow (in microns)

	SLI	SL2	SL3	SL4	SL5	SL6	avg.
Sec1	300.138	317.873	339.445	336.659	289.601	304.964	314.78
Sec2	278.685	282.637	334.48	343.853	305.773	305.661	308.515
Sec3	289.093	294.672	338.313	334.873	315.528	336.468	318.158
Sec4	276.361	295.472	327.697	327.312	289.475	309.259	304.263
Sec5	269.446	302.969	308.808	318.593	298.941	304.009	300.462
Sec6	279.391	310.977	350.894	344.55	315.613	321.088	320.418
avg.	282.187	300.767	333.273	334.307	302.488	313.575	311.1
Time re	sidual sign	nas, wide (i	n microns)				I
	SLI	SL2	SL3	SL4	SL5	SL6	avg.
Sec1	875.437	795.322	880.319	884.07	856.871	888.437	863.41
Sec2	807.731	779.712	894.747	870.053	865.808	903.763	853.635
Sec3	762.52	829.993	896.439	882.144	863.779	953.853	864.787
Sec4	791.113	776.488	872.632	870.512	875.74	891.515	846.333
Sec5	862.978	813.559	868.631	821.788	865.76	906.177	856.483
Sec6	785.94	817.213	978.607	848.925	886.457	916.551	872.283
avg.	814.287	802.047	898.563	862.915	869.07	910.05	859.488
Time re	sidual mea	ns (in micr	ons)				
	SL1	SL2	SL3	SL4	SL5	SL6	avg.
Sec1	-25.8572	-160.905	-1.46805	-196.402	-98.0619	-83.843	-94.4228
Sec2	-135.171	-111.061	-94.0615	-214.433	-63.2593	-87.4449	-117.572
Sec3	-146.623	-72.4154	-40.1956	-231.063	-72.0922	-51.632	-102.337
Sec4	-127.159	-140.689	-66.9334	-242.26	-57.4313	-61.4728	-115.991
Sec5	-86.5304	-106.591	-70.5235	-239.458	-67.9831	-68.2823	-106.561
Sec6	-115.801	-157.46	-72.7581	-179.383	-80.3399	-75.3428	-113.514
avg.	-106.19	-124.853	-57.6567	-217.167	-73.1945	-71.3363	-108.4
Hits per	• TBT						I
	SL1	SL2	SL3	SL4	SL5	SL6	avg.
Sec1	3.33672	4.86667	5.59873	5.51069	5.59111	5.43365	30.3376
Sec2	3.40187	5.50819	5.4848	5.49947	5.06251	5.24389	30.2008
Sec3	3.74594	5.82889	5.5742	5.69237	5.29429	5.38328	31.519
Sec4	3.86002	5.77892	5.75063	5.72003	5.69824	5.55805	32.3659
Sec5	3.86687	5.64601	5.69448	5.6638	5.57607	5.40634	31.8536
Sec6	3.88445	5.81918	5.78918	5.58428	5.30587	5.15589	31.5389
avg.	3.68265	5.57465	5.64867	5.61178	5.42135	5.36352	31.3027
Avg. Ch	isq per DC)F					I
Sec1	Sec2	Sec3	Sec4	Sec5	Sec6	avg.	
2.02774	1.8201	1.8777	1.81188	2.07256	2.05133	1.94355	

Figure 2.6: This results are generated and checked for each cooked file using histograms from trk_mon program output.

Figure 2.7: The average narrow sigma during 2.9 GeV data set. There are continuous drifts due to humidity and temperature variations. Major jumps were associated with to change of gas mixture - a new bottle with higher pressure for instance.

Figure 2.8: Stability of average parameters wide sigma and Gaussians midposition in g1c 2.9 GeV data DC calibration.

Figure 2.9: Start counter timing alignment.

2.6 Electromagnetic Calorimeter Calibration

The forward electromagnetic calibration has two aspects: timing calibration and energy calibration. Timing calibration is done using the TOF as reference. The quality of this calibration in illustrated in Figure 2.11.

2.7 Large Area Calorimeter Calibration

Figure 2.10: Typical β versus momentum spectra obtained in g1c from CLAS information.

Figure 2.11: EC timing calibration ensure that the neutral particles (mostly photons) that are detected only in EC have correctly defined value for β .

Chapter 3

Technical Details of Cooking

3.1 Software Versions and a1c Command Line

In the G1C data set we had three electron energy periods: 3.1 GeV, 2.9 GeV and 2.4 GeV. The bremsstrahlung photon energies detected by the tagger are between 20% and 95% of the incident electrons energy. First we have calibrated and cooked the 2.4 GeV data set. Some enhancements in the cooking process, such as knocking out the dead wires, were implemented and used only for the later cooking. The specific information is detailed for each procedure and data set.

Data set	Calibration	Cooking	Gflux
2.4: 21760-22000	08/2000-01/2001	02/2001-03/2001	01/2002
3.1: 20900-21360	04/2001-07/2001	08/2001-09/2001	01/2002
2.9: 21400-21600	10/2001-12/2001	03/2001-04/2001	04/2002

During calibration sets of constants were determined for each detector system, and correlated to put in value CLAS as a tuned experimental apparatus. Historically, these numbers were organized in files called Maps. The glc data cooking and calibration happened parallel with the development of another mode to archive these constants in a Calibration database (see CLAS Note 01-003 [3]). There is a one-to-one relation between maps and the Calibration database. Throughout the cooking process we chose to use Maps, however same information was transferred in June 2002 into the official Calibration database. Reference maps can be copied from JLAB-CUE

/work/clas/production/g1c/PARMS/Maps.

For track pattern recognition purpose there is a typical tracks (roads) file used in tracking reconstruction. The roads file used in G1C cooking was prlink_50_00.bos. These typical tracks are scaled and evaluated by using an additional magnetic field map. The magnetic field map used in G1C cooking was read from bgrid_T67to33.fpk. The roads file and magnetic field map file are in

/work/clas/production/g1c/PARMS.

The cooking command line used for 2.4GeV data set was:

```
a1c -N.pass1 -yclas_0[run].A[file].sync -T1 -st1 -0 -D0x103d
-cm0 -ct1921.37 -P0x1fff -i clas_0[run].A[file]
```

The cooking command line used for 3.1GeV 2.9GeV data sets was:

```
a1c -N.pass1 -yclas_0[run].A[file].sync -T1 -st1 -O -D0x103d
-cm0 -P0xffff -i clas_0[run].A[file]
```

The typical name and location of G1c raw files is /mss/clas/g1c/data/clas_0(run_number).A(file_number). The tape directory stub for the cooked files is /mss/clas/g1c/production/pass1/cooked. The typical name of a cooked file is run(run_number)_.pass1.a(file_number).(ext). The extension is used for the case when the cooked output is bigger than

2GB and has to be split in multiple files (.00, .01, etc).

Before starting processing (cooking) each runs group (according to electron beam energy), we fixed by tagging the software version:

- for **2.4** data set the tag is *g1c-2445* and is based on release-2-4 of CLAS software;
- for **3.1** data set the tag is *g1c-3115* and is based on release-3-4 of CLAS software;
- for 2.9 data set the tag is *g2a-recook* and is based on release-3-6 of CLAS software.

3.2 Cooking Scripts and Monitoring

We adapted the cooking scripts from packages/scripts/cooking_scripts area. The changes in the scientific computing environment made cooking faster and the scripts had to be adjusted accordingly. The ability to specify directly the raw file input by its tape location instead of waiting for the file transfer to the cache disks, lifted the necessity to use cronjob type of scripts when submitting jobs. When the input of a job submitted for processing to the LSF farm is a stub on the tape, the LSF software generates the transfer of the file from the tape while keeping the processing job pending. Once the file is retrieved from the tape on the cache disks serving the farm, the job enters the normal queue.

For each file, the following monitors were executed as part of cooking job: photon_mon, pid_mon, trk_mon,sc_mon, and the sync utility. The SEB ntuples were created using nt10maker. For part of the data ROOT files were also generated. The monitor hbooks can be found on the semipermanent work disks:

/work/clas/production/g1c /work/clas/production2/g1c. The most recent SEB ntuples are on tape with the stub directory: /mss/clas/g1c/production/pass1/v2/data/Ntuples. The root files are on tape with the stub directory: /mss/clas/g1c/production/pass1/v2/data/root.

3.3 Cooked File Bank Content Adjustment

The cooking output should keep as much as possible the original raw information for each event. However while cooking the 2.4 GeV data set we noticed that was awkward to manipulate the cooked output that was bigger than the input and bigger than 2 GB, resulting in 2 cooked files for one raw data file. In spite of increasing better technical means, this split output is an additional complication. We reviewed the output banks for the 3.1 and 2.9 GeV G1C data cooking. To evaluate what fraction (percentage) of the file size each bank represents, we used the utility program fsize. We decided to remove following banks from the 3.1 and 2.9 GeV cooked data :

Banks name	Size	Representing	Comment
HLS,HLS+	2.34%	helicity scaler banks	not functional in g1c
SC1,SCR,SCRC	8.31%	TOF intermediate banks	can be rebuild with little CPU time expense
HBID	5.11%	Hit-based ID bank	information exists in the TBID bank
TAGI	2.31%	Intermediate tagger bank	the raw (TAGT, TAGE) banks and TAGR
			result bank presence make TAGI unnecessary
ST1	1.03%	Start counter intermediate results bank	easy to rebuild
STR	1.48%	Start counter results bank	easy to rebuild
ECPI	1.31%	Calorimeter pixels for DISPLAY only	not necessary
ECHB	5.51%	Forward calorimeter result bank	easy to rebuild
ECPC	1.01%	EC Particle Calibration bank	not necessary
CC01	0.05%	Cerenkov Counter hits bank	Cerenkov not used in photon run
CCRC	0.16%	Cerenkov reconstruction bank	Cerenkov not used in photon run
CCPB	0.03%	Cerenkov reconstruction bank (SEB)	Cerenkov not used in photon run

There are two additional banks in the 3.1 and 2.9 GeV cooked data:

Bank name	Size	Representing
MVRT	1.78%	vertex result bank
RGLK	0.92%	single region hits bank

Limiting the number of output banks decreased the size of the cooked data to about 1.7 GB, lower then the 2GB threshold that requires storing data in multiple files. We kept the raw information banks in the output to allow adjustments or calibration improvements to be performed directly during analysis of the cooked files without having to re-cook.

3.4 Dead-wires Removal at Cooking

After finishing cooking the 2.4 GeV runs we tried to compile a list of deadwires to be used in simulation. The utility program pdu was run for this purpose at cooking phase, yielding outputs with lists of dead and hot wires. Trying to merge this information, we came to the conclusion that most wires were marked as dead at one moment or another. The less frequent hit wires in front and back of a wire plane were almost always declared dead. Ioana Niculescu, Gabriel Niculescu and Luminita Todor developed and used for the first time in g1c cooking a new procedure of identifying and removing before cooking the dead wires. The procedures automatically compares any wire in a layer and sector, with the same wire position in the other sectors. The hot wires are marked and not used when estimating specific wire-layer means. The automatic generated list was checked by analyzing each layer diagram. The purpose of the exercise was besides establishing a unique dead-wire list for each run period, to remove 'partially alive' wires. These wires were not providing useful track-hit information, but the electronic noise they picked was sometime compatible with neighboring cluster hits and were consequently included (see Figure 3.1).

It seemed correct to remove same wires at the time of cooking as during simulation. Therefore we implemented in a1c the option to remove dead-wires before DC track building. For the 3.1 GeV and 2.9 GeV data sets the list of dead-wires was compiled and dead-wires were removed. The information is in map DC_STATUS.map; each sector is a subsystem with the only item status (integer) having 6912 (36x192) integer entries. If a wire doesn't exist at all it is marked -2; is the wire is dead 1; good wires are marked 0.

Figure 3.1: Dead-wire removal - proof of principle. The black line represents the calculated other sector average hits. The red line represents the actual sector occupancy without removing dead-wires. The blue line represents the sector occupancy after dead-wires removal. The blue line mostly overlap black and red lines. The change is most visible in sector 1.

Chapter 4

Filtering Cooked Files

4.1 G1_filter Software

A feature of CLAS data analysis is the analysis of different reactions is done using same data files. When the events analyzed by a group represent a small percentage (of order of 10%) of the events in the cooked file, filtering of the events of interest is considered. As different groups may focus on events selected according to different conditions, the $g1_{filter}$ program allows the creation of different skimmed files in one pass over the events in the original cooked file.

The g1_filter command line is:

```
Usage: /work/clas/production2/g1c/bin/LinuxRH6/g1_filter [-o<prefix>]
[-c#] [-R[#]] [-n#] [-i#] [-h] file
```

The options are:

```
-o<prefix> Output filters to <prefix>.<filter>
-c# Create only some filter files
As of April 23 the following filter files can be created:
    1 : 0x0001 : 2Pos
    2 : 0x0002 : Eta
    4 : 0x0004 : K
    8 : 0x0008 : KPE
    16 : 0x0010 : Kmiss
    32 : 0x0020 : Ktof
    64 : 0x0040 : Nmiss
```

```
128 : 0x0080 : PKpKm
    256 : 0x0100 : Phys
    512 : 0x0200 : Pimiss
   1024 : 0x0400 : KOPiP
   2048 : 0x0800 : KOPiN
   4096 : 0x1000 : Scaler
   8192 : 0x2000 : Pim
 Default all filter files will be created.
 For a subset of filters, put after -c the sum of the values.
 note that hex can also be used.
 (example to use filters:
                           K, PKpKm, Pimiss, KOPiN,
 you would use -c2692 or -c0x0a84)
-R[int#>0]
            Rebuild PART and TBID banks
-n<#> read only <#> of events
-i<#> run in batch mode
-h Print this message.
```

4.1.1 Present Implemented Filtering Functions

The filtering software design is based on use of EventType boolean test functions. All special events like scalers, EPICS events, etc. are saved in all skimmed files. The present implemented filters are:

- 1. 2Pos The test function for this filter checks the HBTR bank for at least 2 particles with positive charge. Due to the big number of the cooked events satisfying this condition, only a subset of the banks was saved to limit the size of this filter file. The banks saved were: PART, TAGR, TBID, TBER, HBER, ECHB, ECPB, ST, STR, STPB, HBTR, HEAD, TAGE, TAGI, TAGT, SC, SCRC, CL01, TDPL, DC0, DHCL, HBID).
- 2. Eta The test function for this filter first requires the event to have at least one neutral and an identified proton. The charge evaluation is based on the content of the PART bank q field. The positive charged particle mass m is calculated using the particle momentum p from the PART bank and particle velocity (in speed of light units) β from TBID bank:

$$m = \frac{p}{\beta}\sqrt{1-\beta^2} \tag{4.1}$$

A particle is considered to be a proton if this calculated mass is bigger than 0.688 GeV and smaller then 1.188 GeV. The events are considered only if the incoming photon energy obtained from TAGR bank is bigger than 0.447 GeV. Finally the missing mass off the proton has to be bigger than 0.347 GeV.

- 3. K The events containing positive kaons candidates are selected using a mass squared cut between 0.09 and 0.49 GeV². The kaon mass is calculated using information from PART and TBID banks, the same way as explained for the proton mass in the *Eta* filter.
- 4. *KPE* The first condition used for event selection for this filter, is that the photon energy bigger than 0.85 GeV. The next condition is to have both a proton and a positive kaon in the event. For the positive particles (according to q field in PART bank) the mass is calculated as shown before from PART and TBID banks. If the mass squared is between 0.49 GeV² and 1.69 GeV² it is considered a detected proton. If the mass squared is between 0.09 GeV² and 0.49 GeV² it is considered a detected kaon.
- 5. Kmiss In this filter are kept events containing π^+ , π^- and proton. The particles are identified using PART and TBID information as previously explained. Events with one π^- and a proton, but no π^+ detected, are kept if the invariant mass of $\pi^- + p$ matches the Λ mass cut (between 1.0 GeV and 1.2 GeV) and the missing mass corresponds to a kaon (between 0.3 GeV and 0.7 GeV).
- 6. *Ktof* This filter is described in CLAS-Note 01-2001[6].
- 7. Nmiss This filter selects events having one π^+ and the reconstructed missing mass off of the π^+ to match the neutron mass (between 0.7 GeV and 1.1 GeV).
- 8. PKpKm Only events for which incident photon is bigger the 1.5 GeV are considered for this filter. Using PART and TBID information K^+ and proton candidates are identified with mass squared cuts between 0.09 GeV² and 0.49 GeV², and between 0.49 GeV² and 1.69 GeV² respectively. An event is written to the skimmed file if the missing mass squared from $\gamma + p \rightarrow p + K^+ + X$ also matches the kaon mass cut.

- 9. *Phys* This filter is a complex filter that can run in different topologies. The EventTypePhys is actually just a wrapper for a multiple condition selection function physfilter; in the present set-up the *Phys* filter selects events with 3 charged particles.
- 10. Pimiss This filter aim to select $\gamma + p \rightarrow \pi^0 + p$ type of events. The proton is identified from the information in the TBID and PART banks. Using also the photon energy from TAGR bank the missing mass in the final state is calculated; if this missing mass is between 0.0001 GeV and 0.16 GeV, the event is considered a valid candidate for neutral pion-photoproduction.
- 11. K0PiP Using the information from the TBID and PART banks the events we want should have a proton, a π^+ and a π^- . Particles are identified based on their charge and mass squared that has to be between -0.01 GeV² and 0.16 GeV² for pions and between 0.49 GeV² and 1.44 GeV² for protons. If the missing mass squared is between 0.02 GeV² and 0.3 GeV² the events are written to the filtered file.
- 12. K0PiN Using the information from the TBID and PART banks, the events containing two π^+ and a π^- are considered. If the missing mass squared is then between 0.75 GeV² and 1.15 GeV², the events are written to the filtered file.
- 13. *Scaler* Some rate studies based on trigger events might be faster if the scaler events are filtered separately. This filter rejects all physics events, keeping only control and scaler events.

4.1.2 How to add a filter to g1_filter

There are two simple steps to take:

- create a new boolean filter function;
- add the new filter in the g1_filter.s wrapper source.

To add the new filter in the g1_filter, one has to do the following:

1. Add your function prototype to the list of prototypes:

int EventTypeNew();

2. Add an item in FilterNum before MAX_FILTER_f:

enum FilterNum {Ktof_f,Kmiss_f,KPE_f,KOPiP_f,KOPiN_f, Pos2_f,Eta_f,PKpKm_f,Scaler_f,New_f,MAX_FILTER_f};

3. Add the function InitFilter:

FilterList[New_f].func=EventTypeNew;
sprintf(FilterList[New_f].name,"New");

- 4. Modify the Makefile to compile and link the source of the new filter;
- 5. Commit your changes to CVS and inform the group about the added filter and its selectivity.

4.2 Location of Output Filters and Ntuples of the G1C Cooked Data

The best version of filtered files (as September 2002) are located on tape in the directory: /mss/clas/g1c/production/pass1/v2/skims. The filtered files are: Eta, K0PiN, K0PiP, KPE, Ktof, PKpKm. The 2Pos filter was executed only once because for its event selection criteria (2 charged particles), re-calibration of the tagger would not have changed selected events. The 2Pos filtered files are in the directory /mss/clas/g1c/production/pass1/v2/skims/2Pos.

Chapter 5

File Tailoring and Normalization

Before cooking the synchronization of event building during data acquisition is checked using the *sync* utility. Blocks of 1000 events are skipped from cooking if synchronization problems occurred.

For g1c data a new method of calculating the photon flux was used. In this new method out-of-time events rate allows the monitoring of changes in the flux of electrons associated with the production of tagged photons. Each time a photon-generated event is detected in CLAS, a TDC window, 200 ns long, is opened for each of the 64 timing detectors in the tagger . Only the correct detector will record the correct time, but the other detectors will see random events, out of time with the true signal as shown in Figure 5.1. This random rate is proportional to the total photon rate in the detector. Because of the high rate in the detectors, this has allowed the measurement of small rate changes (less than 1%) in time periods of less than 5 minutes.

To achieve desired precision when using this method, we remove from the photon flux evaluation the scaler intervals that correspond to beam trips. This means that when using the photon flux calculated with the *gflux* utility, an after-facto tailoring has to be performed during analysis.

A new subsystem to be used with *gflux* was added to NORM.map.

Subsystem	n: gflux,	nitems: 11			
Item:	<pre>begin_t_window,</pre>	length:	1,	type:	float
Item:	end_t_window,	length:	1,	type:	float
Item:	ngamma_25mev,	length:	100,	type:	float

Figure 5.1: Normalization with gflux, the use of out-of-time accidentals.

Item:	ngamma_25mev_u,	length:	100,	type:	float
Item:	ngamma_eb_u,	length:	767,	type:	float
Item:	ngamma_tc,	length:	61,	type:	float
Item:	norm_run,	length:	1,	type:	int
Item:	tag_ratio,	length:	61,	type:	float
Item:	tag_ratio_u,	length:	61,	type:	float

First normalization runs were processed to established the tagging ratio. The *gflux* output is an hbook called gflux*.hbk. The normalization run analysis also produces the text file gflux*_tag_ratio.dat. The tagging ratio were very stable as shown in figure 5.2. The photon flux evaluation for production runs use the tagging ratio result from normalization runs, reading the values from the NORM.map. In production running besides the hbook also three text files are produced : gflux*_tc.dat, gflux*_eb.dat, and gflux*_eb25mev.dat, which are the photon fluxes binned per T counter, E bin, and energy, respectively. These outputs are located in JLAB CUE:

- 2.4 GeV data set:
 - gflux outputs are in /work/clas/production/g1c/pass1/gflux_out;
 - trip files are in /work/clas/production/g1c/pass1/monitor/sync;

• 2.9 GeV data set:

- gflux outputs are in /work/clas/production2/g1c/pass1.2900/gflux;
- trip files are in /work/clas/production2/g1c/pass1.2900/sync;

• 3.1 GeV data set:

- gflux outputs are in /work/clas/production2/g1c/monitor/gflux_out;
- trip files are in /work/clas/production2/g1c/monitor/sync.

Figure 5.2: Tagging ratio stability for g1c 2.4 GeV data set.

Appendix A

List of runs processed in pass1 for electron beam energy of 2445 MeV

Run	Files	Comments	Run	Files	Comments
21763	7		21801	12	
21765	7		21802	7	
21769	4		21803	13	
21772	9		21804	12	
21773	11		21805	14	
21774	12		21806	11	
21775	9		21807	7	
21776	8		21808	11	
21777	11		21809	3	
21779	11		21812	11	\checkmark
21780	11	1 data file lost 03	21813	3	\checkmark
21781	12		21814	14	\checkmark
21782	11		21815	11	\checkmark
21783	14		21816	11	\checkmark
21784	9		21817	11	\checkmark
21785	12		21818	12	\checkmark
21786	11	\checkmark	21819	11	\checkmark
21790	12	\checkmark	21820	11	\checkmark
21791	11	\checkmark	21821	11	\checkmark

Run	Files	Comments	Run	Files	Comments
21822	11		21867	11	\checkmark
21827	11	\checkmark	21868	11	\checkmark
21828	11		21869	4	\checkmark
21829	11	\checkmark	21871	10	\checkmark
21830	11		21877	8	\checkmark
21831	12		21878	8	\checkmark
21832	11		21881	16	\checkmark
21833	11	Bad DC	21882	10	\checkmark
21834	13		21883	6	\checkmark
21835	11		21884	15	\checkmark
21836	11		21885	12	\checkmark
21837	11		21886	12	\checkmark
21838	11		21887	12	\checkmark
21839	11	\checkmark	21888	11	\checkmark
21840	11	\checkmark	21889	11	\checkmark
21841	11		21890	11	\checkmark
21842	11	\checkmark	21891	10	\checkmark
21843	11		21892	11	\checkmark
21844	11	\checkmark	21893	11	\checkmark
21845	11		21894	11	\checkmark
21846	8	\checkmark	21905	6	\checkmark
21847	5		21906	12	\checkmark
21848	5	\checkmark	21907	12	\checkmark
21849	11		21908	11	\checkmark
21855	12	\checkmark	21909	19	\checkmark
21856	11	\checkmark	21910	11	\checkmark
21857	11	\checkmark	21911	11	\checkmark
21858	11	! file 02 Sec.2 TOF	21912	11	\checkmark
21859	11		21913	9	Bad DC
21860	11		21914	11	\checkmark
21861	12		21915	11	\checkmark
21862	11		21917	11	\checkmark
21863	12		21930	11	\checkmark
21864	2	\checkmark	21931	2	!big fraction of bad sync is 5%
21865	12		21932	11	\checkmark
21866	12		21937	13	

Run	Files	Comments	Run	Files	Comments
21938	12	\checkmark	21959	12	\checkmark
21939	12		21960	7	\checkmark
21940	13		21963	15	\checkmark
21941	10		21964	12	\checkmark
21942	12		21965	11	\checkmark
21943	11		21967	11	\checkmark
21944	11		21968	14	\checkmark
21945	12		21969	18	\checkmark
21946	11		21970	16	\checkmark
21947	11		21971	16	\checkmark
21948	12		21972	16	\checkmark
21949	11		21973	17	\checkmark
21951	11		21974	17	\checkmark
21952	11		21975	11	\checkmark
21955	9		21979	10	\checkmark
21956	11	\checkmark	21981	3	\checkmark
21957	3		21982	13	\checkmark
21958	12	\checkmark	21983	1	\checkmark

Appendix B

List of runs processed in pass1 for electron beam energy of 3115 MeV

Run	Files	Comments	Run	Files	Comments
20926	10		20951	12	
20927	12		20952	11	\checkmark
20928	11		20953	14	\checkmark
20930	11		20954	16	\checkmark
20931	16		20960	14	\checkmark
20932	13	Cann't analyze A11	20963	15	\checkmark
20933	12		20964	15	\checkmark
20934	14		20969	11	\checkmark
20935	6		20970	11	\checkmark
20936	16		20971	11	\checkmark
20937	5		20972	9	\checkmark
20941	10		20973	11	\checkmark
20942	10		20978	6	\checkmark
20943	11		20982	17	\checkmark
20944	9		20983	16	\checkmark
20945	11		20984	16	\checkmark
20946	9		20985	17	\checkmark
20948	10		20986	17	\checkmark
20949	11		20987	13	\checkmark
20950	6		20988	11	

Run	Files	Comments	Run	Files	Comments
21015	7	\checkmark	21070	5	empty target run
21017	12	\checkmark	21071	7	empty target run
21020	12	\checkmark	21120	13	Cann't analyze 09
21021	3	\checkmark	21121	15	
21022	2	\checkmark	21122	12	
21023	12	\checkmark	21123	11	
21024	12	\checkmark	21124	12	
21027	13	\checkmark	21125	11	
21028	3	\checkmark	21126	9	
21029	10	\checkmark	21127	12	
21030	12	\checkmark	21128	14	
21031	8	\checkmark	21129	12	
21034	12	\checkmark	21130	17	
21035	11	\checkmark	21134	12	
21036	2	\checkmark	21135	12	
21037	13	\checkmark	21136	12	
21038	12	\checkmark	21138	12	
21039	12	\checkmark	21139	12	
21040	12	\checkmark	21139	12	
21041	12	\checkmark	21140	16	
21042	13	\checkmark	21147	13	
21043	12	\checkmark	21148	13	
21044	12	\checkmark	21149	12	
21045	5	\checkmark	21150	11	
21057	17	\checkmark	21151	10	\checkmark
21058	15	\checkmark	21152	12	\checkmark
21059	21	\checkmark	21153	5	Cann't analyze file 03
21060	3	\checkmark	21155	2	\checkmark
21061	13	\checkmark	21157	13	\checkmark
21062	9	\checkmark	21169	11	\checkmark
21063	13	\checkmark	21170	13	\checkmark
21064	8	\checkmark	21172	13	\checkmark
21066	1	empty target run	21173	12	
21067	4	empty target run	21174	12	
21068	5	empty target run	21175	16	\checkmark
21069	7	empty target run	21176	12	\checkmark

Run	Files	Comments	Run	Files	Comments
21177	6	• • • • • • • • • • • • • • • • • • • •	21240	2	./
21177 21178	17	\mathbf{v}	21210	11	\mathbf{v}
21110	9	\mathbf{v}	21211	12	V
21186	10	V N	21243	1	V V
21188	11	V N	21255	12	V V
21180 21189	11	\mathbf{v}	21256	20	V V
21100	15	\mathbf{v}	21250	<u>-</u> ® 12	V
21100 21191	12	\mathbf{v}	21258	11	V V
21192	11	v v	21259	11	v v
21193	11	\mathbf{v}	21260	12	
21194	12	\mathbf{v}	21261	1	
21203	3	v	21262	11	
21204	17	v v	21263	11	
21205	17		21264	11	
21206	11		21265	8	
21209	11		21266	12	
21210	11		21267	11	
21212	11		21268	12	
21213	12		21269	12	
21214	12		21272	11	
21215	12		21273	11	
21216	11		21274	19	
21217	12		21276	11	
21218	11		21277	10	
21219	11		21278	2	
21220	15		21282	4	
21222	12		21283	13	
21223	12	\checkmark	21326	11	\checkmark
21224	12	\checkmark	21327	2	\checkmark
21225	10	\checkmark	21328	12	\checkmark
21230	7	\checkmark	21330	13	\checkmark
21231	11	\checkmark	21331	11	\checkmark
21232	11	\checkmark	21334	12	\checkmark
21233	4		21335	13	\checkmark
21234	14		21336	13	\checkmark
21235	12	\checkmark	21339	11	\checkmark
21236	11	\checkmark	21343	12	\checkmark
21237	12	\checkmark	21346	12	\checkmark
21238	11	\checkmark	21347	13	\checkmark
21239	12	\checkmark	21348	13	\checkmark

Run	Files	Comments
21349	7	
21350	19	
21351	14	
21353	10	
21357	14	Cann't analyze 13
21358	13	
21359	12	\checkmark

Appendix C

List of runs processed in pass1 for electron beam energy of 2897 MeV

Run	Files	Comments	Run	Files	Comments
21427	6	\checkmark	21451	11	\checkmark
21428	3		21452	6	
21430	11	\checkmark	21453	13	\checkmark
21431	3	\checkmark	21454	11	\checkmark
21433	10	\checkmark	21455	21	\checkmark
21434	11	\checkmark	21456	21	\checkmark
21435	11	\checkmark	21457	13	\checkmark
21436	11	\checkmark	21458	11	\checkmark
21437	10	\checkmark	21460	23	\checkmark
21438	11	$\sqrt{\text{missing raw file } 00}$	21463	11	\checkmark
21439	9	\checkmark	21464	9	\checkmark
21441	3	\checkmark	21466	13	\checkmark
21442	11	\checkmark	21467	21	\checkmark
21443	11	\checkmark	21468	8	\checkmark
21444	10	\checkmark	21469	6	\checkmark
21445	3	\checkmark	21470	4	\checkmark
21446	13	\checkmark	21473	10	\checkmark
21447	11	\checkmark	21474	21	\checkmark
21448	3	\checkmark	21475	20	\checkmark
21450	11	\checkmark	21476	14	\checkmark

Run	Files	Comments	Run	Files	Comments
21482	7		21547	10	
21483	3		21548	1	\checkmark
21484	12		21554	3	
21488	11		21555	12	$\sqrt{\text{missing }07}$
21489	11	\checkmark	21556	12	$\sqrt{\mathrm{RR}}$
21490	11		21562	9	$\sqrt{\mathrm{RR}}$
21491	11	\checkmark	21563	3	$\sqrt{\mathrm{RR}}$
21492	21		21564	1	\checkmark
21493	21		21565	1	\checkmark
21494	4		21566	2	
21495	21		21567	2	\checkmark
21496	13		21569	7	\checkmark
21497	20		21577	4	\checkmark
21523	21	\checkmark	21579	11	
21524	2	\checkmark	21580	10	
21525	1	\checkmark	21582	17	
21526	1		21583	17	
21527	1	\checkmark	21584	21	
21528	1	\checkmark	21585	6	
21529	3	\checkmark	21607	10	
21530	5		21609	11	
21531	1	\checkmark	21610	12	
21535	5		21611	22	\checkmark
21540	10	\checkmark	21614	11	\checkmark
21541	5		21615	8	\checkmark

Appendix D

Additional Drift Chamber Calibration Plots

Bibliography

- [1] CLAS_NOTE 1993-002 CLAS Event Format by L. Dennis, D.P. Heddle
- [2] CLAS_NOTE 1999-016 e1,g1, and g6 Data Processing Procedures by J.J. Manak, E.S.Smith, S.McAleer, S.Barrow
- [3] CLAS_NOTE 2001-003 *The CLAS Calibration Database* by M. Ito, G. Riccardi, and R. Suleiman
- [4] CLAS_NOTE 1999-011 Calibration of the CLAS TOF System by E.Smith et al.
- [5] CLAS_NOTE 1999-018 CLAS Drift Chamber Calibration: Software and Procedures by D. Lawrence, M.Mestayer
- [6] CLAS_NOTE 2001-001 Kaon Filtering for CLAS data by J.W.C. McNabb